Laser & Optoelectronics Progress, Volume. 59, Issue 5, 0500001(2022)

Application of Single Photon Detection in Wireless Optical Communication Transceiver Technology

Chao Wan1, Hao Hao2, Qingyuan Zhao1,2、*, Hao Liu1, Cong Li3, Te Chen3, Guixing Cao3, Xuecou Tu1,2, Labao Zhang1,2, Xiaoqing Jia1,2, Lin Kang1,2, Jian Chen1,2, Huabing Wang1,2, and Peiheng Wu1,2
Author Affiliations
  • 1Purple Mountain Laboratories, Nanjing , Jiangsu 211111, China
  • 2Research Institute of Superconductor Electronics, Nanjing University, Nanjing , Jiangsu 210023, China
  • 3Institute of Telecommunication and Navigation Satellites, China Academy of Space Technology, Beijing 100094, China
  • show less
    Figures & Tables(22)
    Optical communication link between ETS-VI and ground station[3]
    Optical communication link between ARTEMIS and OICETS[5]
    Optical communication terminal on TerraSAR-X and NFIRE [6]
    Schematic diagram of coherent detection[7]
    Optical communication link of LLCD[12]
    SNSPD array used in the LLGT optical receiver[13]
    Relevant reports about DSOC. (a) Optical communication link of DSOC; (b) SNSPD array layout for the ground station; (c) free space optical coupling method[15]
    Underwater optical communication experiment of KAUST. (a) Experimental system; (b) test results of BER and communication rate[31]
    Scheme and picture of the underwater optical communication terminal of SSSUP[33]
    Underwater optical communication experimental system of US[34]
    Underwater optical communication experimental system of ZJU[35]
    Underwater optical communication experimental system using MPPC of ZJU[40]
    Underwater optical communication experimental system using SPAD of FU[46]
    Underwater optical communication experimental system based on photon counting of SIOM[53]
    High-speed series nanowire superconducting single-photon detector from Nanjing University. (a) Device structure; (b) equivalent circuit model[56]
    Simulation results between BER and average photon number based on SND and conventional SNSPD under same conditions
    System diagram of single photon communication research conducted by Nanjing University and PML
    Relationship between BER and photon number measured by two decoding methods at maximum communication rates based on SND
    • Table 1. Summary of typical space optical communication transceiver technology

      View table

      Table 1. Summary of typical space optical communication transceiver technology

      YearTerminalWavelength /nmModulationDetectorDistance /kmCommunication rate /(Mb⋅s-1
      1995ETS-VI / TMF Ground Station

      514 (up)

      830 (down)

      2-PPMAPD>370001.024
      2005

      ARTEMIS /

      OICETS

      847 (up)819 (down)

      NRZ-OOK (up)

      2-PPM (down)

      APD45000

      50 (up)

      2 (down)

      2008

      TerraSAR-X /

      NFIRE

      1064 (two-way)BPSKBalanced detector50005625
      2011HY-2 /Ground Station---2000504 (down)
      2013LADEE / LLGT Ground Station

      1558 (up)

      1550 (down)

      SCPPMSNSPD array (ground)400000

      20 (up)

      622 (down)

      2016QUESS / Ground Station

      1064 (up)

      1550 (down)

      -->1000

      20 (up)

      5120 (down)

      2017SJ-13 / Ground Station---400005000
      UnderwayPsyche / OCTL Ground station

      1064 (up)

      1550 (down)

      SCPPMSNSPD array (ground)1.5×107—4×108267 (down)
    • Table 2. Summary of the typical underwater optical communication transceiver technology

      View table

      Table 2. Summary of the typical underwater optical communication transceiver technology

      InstitutionYearWavelength /nmModulationDetectorDistance /mCommunication rate /(Gb⋅s-1
      KAUST2016450NRZ-OOKAPD20/121.5/2.0
      SSSUP2018470Manchester codedAPD100.01
      US2019450QAM-OFDMPIN1.5/34.92/3.22
      ZJU201752032QAM-OFDMAPD21+55.5
      ZJU2018450DMTAPD/PIN15/57.33/16.6
      ZJU2019450256QAM-DMTPIN3512.62
      ZJU2018460PAM4MPPC20.012
      ZJU2019Blue LEDPPMMPPC46Mb⋅s-1
      ZJU201952032QAM-OFDMMPPC210.312
      FU2017520NRZ-OOKAPD/PIN34.52.7
      FU2018457PAM8PIN1.21.5
      FU201852164QAM-DMT2 PINs1.22.175
      FU2019Blue LED64QAM-DMTPIN1.23.075
      FU2020450OOKSPAD1170.002
      USTC2019450NRZ-OOKAPD602.5
      USTC2019520NRZ-OOKAPD1000.5
      NTUT201640516QAM-OFDMPD89.6
      NTUT2017488PAM4PIN1016
      NTU201745016QAM-OFDMPIN1.7/10.212.4/5.6
      MCUT2019488PAM4APD12.530
      SIOM2018532256-PPMPMT249.2-
    • Table 3. Summary of typical performances of PIN and APD based on different materials[54]

      View table

      Table 3. Summary of typical performances of PIN and APD based on different materials[54]

      ParameterSi-PINSi-APDGe-PINGe-APDInGaAs-PINInGaAs-APD
      Wavelength /nm400—1100800—1800900—1700
      Peak /nm900830155013001300 (1550)1300 (1550)
      Responsivity /(A⋅W-10.677—1300.65—0.73—28

      0.63—0.8

      (0.75—0.97)

      Quantum efficiency /%65—907750—5555—7560—7060—70
      Gain1150—25015—40110—30
      Bias voltage /(-V)45—1002206—1020—355<30
      Dark current /nA1—100.1—1.050—50010—5001—201—5
      Capacitance /pF1.2—31.3—22—52—50.5—20.5
      Rise time /ns0.5—10.1—20.1—0.50.5—0.80.06—0.50.1—0.5
    • Table 4. Summary of the typical performances of different single photon detectors[55]

      View table

      Table 4. Summary of the typical performances of different single photon detectors[55]

      DetectorWavelength /nmEfficiency /%Maximum count rate /(106 s-1Dark count /(103 s-1Jitter /ps
      GaAsP PMT550—6504010<1080
      InP/InGaAs PMT950—17002-250400
      Si SPAD820551<0.120
      InGaAs SPAD13104519712140
      SNSPD1550>9025<0.01<5
    Tools

    Get Citation

    Copy Citation Text

    Chao Wan, Hao Hao, Qingyuan Zhao, Hao Liu, Cong Li, Te Chen, Guixing Cao, Xuecou Tu, Labao Zhang, Xiaoqing Jia, Lin Kang, Jian Chen, Huabing Wang, Peiheng Wu. Application of Single Photon Detection in Wireless Optical Communication Transceiver Technology[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0500001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jun. 24, 2021

    Accepted: Sep. 8, 2021

    Published Online: Feb. 22, 2022

    The Author Email: Zhao Qingyuan (qyzhao@nju.edu.cn)

    DOI:10.3788/LOP202259.0500001

    Topics