Journal of the Chinese Ceramic Society, Volume. 50, Issue 9, 2483(2022)
Low-Temperature Synthesis and Photoluminescence Properties of 3C-SiC Nanowires via Co Nanoparticle Catalytic Reaction
[1] [1] NIKOLAEV S N. Structural and optical properties of silicon carbide powders synthesized from organosilane using high-temperature high-pressure method[J]. Nanomaterials, 2021, 11: 3111.
[2] [2] NGUYEN S T, TAKAHASHI T, OKAWA A, et al. Improving self-healing ability and flexural strength of ytterbium silicate-based nanocomposites with silicon carbide nanoparticulates and whiskers[J]. J Ceram Soc JPN, 2021, 129(4): 209-216.
[3] [3] DING M, STAR A. Synthesis of one-dimensional SiC nanostructures from a glassy buckypaper[J]. ACS Appl Mater Inter, 2013, 5(6): 1928-1936.
[4] [4] SU J N, YANG Y, REN J Q, et al. Study on magnetic properties of Fe-doped 3C-SiC nanowires. J Crys Growth, 2020, 532: 125412.
[5] [5] SUN X H, LI C P, WONG W K, et al. Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes[J]. J Am Chem Soc, 2002, 124(48): 14464-14471.
[6] [6] SHI W, ZHENG Y, PENG H, et al. Laser ablation synthesis and optical characterization of silicon carbide nanowires[J]. J Am Ceram Soc, 2010, 83(12): 3228-3230.
[7] [7] ZHAO H S, SHI L M, LI Z Q, et al. Silicon carbide nanowires synthesized with phenolic resin and silicon powders[J]. Physica E, 2009, 41(4): 753-756.
[8] [8] NIU J J, WANG J N. An approach to the synthesis of silicon carbide nanowires by simple thermal evaporation of ferrocene onto silicon wafers[J]. Eur J Inorg Chem, 2010, 2007(25): 4006-4010.
[9] [9] ROCCAFPRTE F, GIANNAZZO F, RAINERI V. Nanoscale transport properties at silicon carbide interfaces[J]. J Phys D Appl Phys, 2010, 43(22): 223001.
[10] [10] LI Y W, WANG Q H, FAN H, et al. Synthesis of silicon carbide whiskers using reactive graphite as template[J]. Ceram Int, 2014, 40(1): 1481-1488.
[11] [11] WEI J, LI K Z, LI H J, et al. Photolumines-cence performance of SiC nanowires, whiskers and agglomerated nanoparticles synthesized from activated carbon[J]. Phys E, 2009, 41(8): 1616-1620.
[12] [12] CHEN J J, SHI Q, XIN L P, et al. A simple catalyst-free route for large-scale synthesis of SiC nanowires[J]. J Alloy Compd, 2011, 509(24): 6844-6847.
[13] [13] WANG Q H, LI Y W, JIN S L, et al. Catalyst-free hybridization of silicon carbide whiskers and expanded graphite by vapor deposition method[J]. Ceram Int, 2015, 41(10): 14359-14366.
[14] [14] XIONG Q M, CHEN Z, HUANG J T, et al. Preparation, structure and mechanical properties of Sialon ceramics by transition metal-catalyzed nitriding reaction[J]. Rare Met, 2020, 39: 589-596.
[15] [15] LU L L, ZHANG S W, ZHANG H J, et al. Structures and mechanical properties of Fe, Cr-incorporated β-Si5AlON7: First-principles study[J]. Ceram Int, 2016, 42(10): 11924-11929.
[16] [16] GU Y J, LU L L, ZHANG H J, et al. Nitridation of silicon powders catalyzed by cobalt nanoparticles[J]. J Am Ceram Soc, 2015, 98(6): 1762-1768.
[21] [21] WANG J K, ZHANG Y Z, LI J Y, et al. Catalytic effect of cobalt on microwave synthesis of β-SiC powder[J]. Powder Technol, 2017, 317: 209-215.
[22] [22] JOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 2008, 140(4A): A1133-A1138.
[23] [23] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setHYPERLINK"http://www.tandfonline.com/servlet/linkout?suffix=CIT0030&dbid=8&doi=10.1080%2F21663831.2013.824516&key=9984901"\t"_blank"[J]. Phys Rev B, 1996, 54(16): 11169-11186.
[24] [24] N'DIAYE A, BLEIKAMP S, FEIBELMAN P J, et al. Two dimensional Ir-cluster lattices on moiré of graphene with Ir(111)[J]. Phys, 2006, 97(21): 215501.
[25] [25] LIANG C H, MENG G W, ZHANG L D. Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles[J]. Chem Phys Lett, 2000, 329(3/4): 323-328.
[26] [26] WANG D, XUE C, BAI H, et al. Silicon carbide nanowires grown on graphene sheets[J]. Ceram Int, 2015, 41(4): 5473-5477.
[27] [27] LI X, ZHANG G, TRONSTAD R, et al. Synthesis of SiC whiskers by VLS and VS process[J]. Ceram Int, 2016, 42(5): 5668-5676.
[28] [28] RAJU M, SEN S, SARKAR D, et al. Synthesis of 3C-silicon carbide 1D structures by carbothermal reduction process[J]. J Alloy Compd, 2021, 857: 158243.
[29] [29] MBUYA C O L, OKOYE-CHINE C G, RAMUTSINDELA K, et al. Microwave modification of cobalt supported on beta silicon carbide catalyst for Fischer-Tropsch synthesis. Reac Kinet Mech Cat, 2022, 135: 287-301.
[30] [30] HAN L, HUANG L, DONG L H, et al. Low temperature preparation of high-performance porous ceramics composed of anorthite platelets[J]. J Am Ceram Soc, 2020, 103: 5365-5373.
[31] [31] LIU J H, GU Y J, LI F L, et al. Catalytic nitridation preparation of high-performance Si3N4(w) -SiC composite using Fe2O3 nano-particle catalyst: Experimental and DFT studies[J]. J Eur Ceram Soc, 2017, 37(15): 4467-4474.
[32] [32] GUAN K K, WANG L Q, HUANG L, et al. Synthesis and high catalytic activity of ISOBAM-104 stabilized Fe colloidal catalysts for hydrogen generation[J]. Catal Today, 2021, 374: 20-28.
[33] [33] WANG H F, ZHANG H J, BI Y B, et al. Effects of different catalysts on performance of self-bonded SiC refractories[J]. Ceram Int, 2021, 47(19): 27863-27872.
[34] [34] WU X L, FAN J Y, QIU T, et al. Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites[J]. Phys Rev Lett, 2005, 94(2): 026102.
[35] [35] SHEN Z Z, CHEN J H, LI B, et al. A novel two-stage synthesis for 3C-SiC nanowires by carbothermic reduction and their photoluminescence properties[J]. J Mater Sci, 2019, 54(4): 12450-12462.
[36] [36] LI X T, WEI J, CHEN B, et al. Effective electromagnetic wave absorption and photoluminescence performances of flexible SiC nanowires membrane[J]. Ceram Int, 2021, 47(12): 17615-17626.
Get Citation
Copy Citation Text
WANG Huifang, ZHANG Haijun, HAO Shiming, LI Haisheng, BI Yubao, JIANG Wei, LIU Juhui. Low-Temperature Synthesis and Photoluminescence Properties of 3C-SiC Nanowires via Co Nanoparticle Catalytic Reaction[J]. Journal of the Chinese Ceramic Society, 2022, 50(9): 2483
Category:
Received: Mar. 11, 2022
Accepted: --
Published Online: Jan. 3, 2023
The Author Email: Huifang WANG (huifang_wang2020@163.com)