Infrared and Laser Engineering, Volume. 50, Issue 5, 20200318(2021)

Crop classification of modern agricultural park based on time-series Sentinel-2 images

Dongyan Zhang1... Zhen Dai1,2, Xingang Xu2,*, Guijun Yang2, Yang Meng2, Haikuan Feng2, Qi Hong1, and Fei Jiang13 |Show fewer author(s)
Author Affiliations
  • 1National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China
  • 2Beijing Agricultural Information Technology Research Center, Beijing 100097, China
  • 3School of Information Engineering, Suzhou University, Suzhou 234000, China
  • show less
    Figures & Tables(12)
    Geographical location and sample distributions of the study area
    Temporal changes of NDVI (a), RVI (b), EVI (c) and Ref (NIR) (d) for main crops
    Flow chart of crop classification extraction
    Crop classification results using Decision Tree (a), Random Forest (b), Support Vector Machine (c), Maximum Likelihood (d)
    • Table 1. Growth period of five crops in the study area

      View table
      View in Article

      Table 1. Growth period of five crops in the study area

      TypeMayJuneJulyAugustSeptemberOctober
      EMLEMLEMLEMLEMLEM
      Note: E means the early 10 days of a month,M is the middle 10 days,and L represents the lately 10 days.
      RiceSowingTilleringHeadingFillingMaturity
      SoybeanSowingSeedingFloweringPoddingFillingMaturity
      SteviaTransplantingBranchingFloweringMaturity
      CornSowingSeedingJointingTasselingFillingMaturity
      Dry riceSowingTilleringHeadingFillingMaturity
    • Table 2. Data lists of Sentinel-2 images

      View table
      View in Article

      Table 2. Data lists of Sentinel-2 images

      Data timeSensorQuality
      2019-05-22Sentinel-2ABest
      2019-06-11Sentinel-2AGood
      2019-06-21Sentinel-2ABest
      2019-07-01Sentinel-2AGood
      2019-08-15Sentinel-2BBest
      2019-08-30Sentinel-2ABest
      2019-09-14Sentinel-2BBest
      2019-09-24Sentinel-2BBest
      2019-10-04Sentinel-2BBest
    • Table 3. Spectral bands of the Sentinel-2 sensors (S2A & S2B)

      View table
      View in Article

      Table 3. Spectral bands of the Sentinel-2 sensors (S2A & S2B)

      Sentinel-2 bandsWavelength/μmReflection/m
      Band1-Coastal aerosol0.44360
      Band2-Blue0.49010
      Band3-Green0.56010
      Band4-Red0.66510
      Band5-Vegetation red edge0.70520
      Band6-Vegetation red edge0.74020
      Band7-Vegetation red edge0.78320
      Band8-NIR0.84210
      Band8A-Vegetation red edge0.86520
      Band9-Water vapour0.94560
      Band10-SWIR-Cirrus1.37560
      Band11-SWIR11.61020
      Band12-SWIR22.19020
    • Table 4. Classification indicators used in the study

      View table
      View in Article

      Table 4. Classification indicators used in the study

      IndicatorDescriptionSource
      Notes: In the formula, $ {\mathrm{\rho }}_{\mathrm{N}\mathrm{I}\mathrm{R}} $ is the near-infrared band reflectivity, $ {\mathrm{\rho }}_{\mathrm{R}\mathrm{E}\mathrm{D}} $ is the red band reflectivity, $ {\mathrm{\rho }}_{\mathrm{B}\mathrm{L}\mathrm{U}\mathrm{E}} $ is the blue band reflectivity and L is the soil adjustment coefficient of 1.
      Normalized Difference Vegetation Index(NDVI)${\rm NDVI} = \dfrac{ { {\rho _{\rm NIR} } - {\rho _{\rm RED} } } }{ { {\rho _{\rm NIR} } + {\rho _{\rm RED} } } }$Ref.[15]
      Ratio Vegetation Index(RVI)${\rm RVI} = \dfrac{ { {\rho _{\rm NIR} } } }{ { {\rho _{\rm RED} } } }$Ref. [16]
      Enhanced Vegetation Index(EVI)${\rm EVI} = 2.5×\dfrac{ { {\rho _{\rm NIR} } - {\rho _{\rm RED} } } }{ { {\rho _{\rm NIR} } + 6.0×{\rho _{\rm RED} } - 7.5×{\rho _{\rm BLUE} } + L} }$Ref. [17-18]
      Near Infrared Ray(Ref(NIR))The reflection of Band-8 in Tab.3Ref. [19]
    • Table 5. Formulas of accuracy evaluation

      View table
      View in Article

      Table 5. Formulas of accuracy evaluation

      TypeCalculation formula
      Notes: where k represents the number of rows and columns of the confusion matrix, Xii represents the value on the diagonal of the confusion matrix that is the number of pixels correctly classified,N represents the total number of pixels verified, Xi represents the i row of the confusion matrix. The sum of elements, Xj represents the sum of elements in the j column of the confusion matrix.
      Mapping accuracy$\mathrm{P}\mathrm{A}=\dfrac{ {X}_{ii} }{ {X}_{j} }×100\%$
      User accuracy$\mathrm{U}\mathrm{A}=\dfrac{ {X}_{ii} }{ {X}_{i} }×100\%$
      Overall accuracy$\mathrm{O}\mathrm{A}=\displaystyle\sum _{i=1}^{k}\dfrac{ {X}_{ii} }{N}×100\%$
      Kappa coefficient${{K} } = \dfrac{ {N\displaystyle\sum\nolimits_{i = 1}^k { {X_{ii} } } - \sum\nolimits_{i = 1}^k { {X_i}{X_j} } } }{ { {N^2} - \displaystyle\sum\nolimits_{i = 1}^k { {X_i}{X_j} } } }$
    • Table 6. Confusion matrix result of Decision Tree

      View table
      View in Article

      Table 6. Confusion matrix result of Decision Tree

      TypeSoybeanRiceSteviaCornDry riceTotalUser accuracy
      Soybean3288400320361291.03%
      Rice056801633176590596.19%
      Stevia002039059209897.19%
      Corn0108451221867397.44%
      Dry rice8914710554820603979.81%
      Mapping accuracy99.76%99.75%92.60%88.57%86.13%
    • Table 7. Confusion matrix result of Random Forest

      View table
      View in Article

      Table 7. Confusion matrix result of Random Forest

      TypeSoybeanRiceSteviaCornDry riceTotalUser accuracy
      Soybean3294000393368789.34%
      Rice0569219183216611093.16%
      Stevia00199308200199.60%
      Corn002930141934499.54%
      Dry rice421421024938518895.18%
      Mapping accuracy99.88%99.96%92.44%97.03%88.24%
    • Table 8. Overall accuracy estimation and Kappa coefficient of classification based on each method

      View table
      View in Article

      Table 8. Overall accuracy estimation and Kappa coefficient of classification based on each method

      Classification methodOverall accuracyKappa coefficient
      Maximum Likelihood86.5%0.823
      Support Vector Machine91.6%0.890
      Decision Tree92.2%0.897
      Random Forest95.8%0.944
    Tools

    Get Citation

    Copy Citation Text

    Dongyan Zhang, Zhen Dai, Xingang Xu, Guijun Yang, Yang Meng, Haikuan Feng, Qi Hong, Fei Jiang. Crop classification of modern agricultural park based on time-series Sentinel-2 images[J]. Infrared and Laser Engineering, 2021, 50(5): 20200318

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Dec. 7, 2020

    Accepted: --

    Published Online: Aug. 13, 2021

    The Author Email: Xu Xingang (xxgpaper@126.com)

    DOI:10.3788/IRLA20200318

    Topics