Laser & Optoelectronics Progress, Volume. 60, Issue 13, 1316004(2023)

Wearable Smart Textiles Using Optoelectronic Techniques

Gaoming Jiang1、*, Chaoyu Chen1, Lijun Chen2, and Pibo Ma1
Author Affiliations
  • 1Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
  • 2School of Design, Jiangnan University, Wuxi 214122, Jiangsu, China
  • show less
    References(123)

    [1] Hsu P C, Song A Y, Catrysse P B et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 353, 1019-1023(2016).

    [2] Oh J Y, Rondeau-Gagné S, Chiu Y C et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors[J]. Nature, 539, 411-415(2016).

    [3] Truby R L, Lewis J A. Printing soft matter in three dimensions[J]. Nature, 540, 371-378(2016).

    [4] Maziz A, Concas A, Khaldi A et al. Knitting and weaving artificial muscles[J]. Science Advances, 3, e1600327(2017).

    [5] Cherenack K, van Pieterson L. Smart textiles: challenges and opportunities[J]. Journal of Applied Physics, 112, 091301(2012).

    [6] Wang X Q, Xin B J, Xu J. Research progress and development trend of smart textiles[J]. Melliand China, 40, 37-40(2012).

    [7] Zhu M S, Huang Y, Ng W S et al. 3D spacer fabric based multifunctional triboelectric nanogenerator with great feasibility for mechanized large-scale production[J]. Nano Energy, 27, 439-446(2016).

    [8] Zeng W, Shu L, Li Q et al. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications[J]. Advanced Materials, 26, 5310-5336(2014).

    [9] We J H, Kim S J, Cho B J. Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator[J]. Energy, 73, 506-512(2014).

    [10] Kim S J, We J H, Cho B J. A wearable thermoelectric generator fabricated on a glass fabric[J]. Energy & Environmental Science, 7, 1959-1965(2014).

    [11] Sethi A, Ting J, Allen M et al. Advances in motion and electromyography based wearable technology for upper extremity function rehabilitation: a review[J]. Journal of Hand Therapy, 33, 180-187(2020).

    [12] Deng W L, Yang T, Jin L et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures[J]. Nano Energy, 55, 516-525(2019).

    [13] Chen J, Oh S K, Nabulsi N et al. Biocompatible and sustainable power supply for self-powered wearable and implantable electronics using III-nitride thin-film-based flexible piezoelectric generator[J]. Nano Energy, 57, 670-679(2019).

    [14] Hatamvand M, Kamrani E, Lira-Cantú M et al. Recent advances in fiber-shaped and planar-shaped textile solar cells[J]. Nano Energy, 71, 104609(2020).

    [15] Weng W, Yang J J, Zhang Y et al. A route toward smart system integration: from fiber design to device construction[J]. Advanced Materials, 32, 1902301(2020).

    [16] Tessarolo M, Gualandi I, Fraboni B. Recent progress in wearable fully textile chemical sensors[J]. Advanced Materials Technologies, 3, 1700310(2018).

    [17] Lee J, Kwon H, Seo J et al. Sensors: conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics[J]. Advanced Materials, 27, 2409(2015).

    [18] Li P, Sun Z H, Wang R et al. Flexible thermochromic fabrics enabling dynamic colored display[J]. Frontiers of Optoelectronics, 15, 40(2022).

    [19] Arthika J, Jeyakumar V, Ajitha J et al. Testing and analysis of nanoparticles-based textrodes for physiological signals[J]. Materials Today: Proceedings, 64, 1813-1821(2022).

    [20] Cai S Y, Xu C S, Jiang D F et al. Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics[J]. Nano Energy, 93, 106904(2022).

    [21] Ding C, Wang J Y, Yuan W et al. Durability study of thermal transfer printed textile electrodes for wearable electronic applications[J]. ACS Applied Materials & Interfaces, 14, 29144-29155(2022).

    [22] Chang W, Nam D, Lee S et al. Fibril-type textile electrodes enabling extremely high areal capacity through pseudocapacitive electroplating onto chalcogenide nanoparticle-encapsulated fibrils[J]. Advanced Science, 9, 2270209(2022).

    [23] Zhu M L, Sun Z D, Zhang Z X et al. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications[J]. Science Advances, 6, eaaz8693(2020).

    [24] Wen F, Zhang Z X, He T et al. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove[J]. Nature Communications, 12, 5378(2021).

    [25] Luo Y, Wang Z H, Wang J Y et al. Triboelectric bending sensor based smart glove towards intuitive multi-dimensional human-machine interfaces[J]. Nano Energy, 89, 106330(2021).

    [26] Xiao P. Design and fabrication of two-dimentional materials/silicon heterojunctions for applications in optoelectronic devices[D](2018).

    [27] Ye M D, Yu R, Lin Y H et al. Mesoscopic reconstruction of protein-based flexible materials and their optoelectronic devices[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 51, 90-102(2021).

    [28] Zhang J, Huang Z H, Niu G L et al. Review on thermal-drawn multimaterial fiber optoelectronics[J]. Journal of Textile Research, 44, 11-20(2023).

    [29] Gu Y P. Preparation and optical properties of SnO2∶xLn3+ (Ln = Eu, Sm, Tb, Dy) nanofibers by electrospinning[D](2014).

    [30] Friend R H, Gymer R W, Holmes A B et al. Electroluminescence in conjugated polymers[J]. Nature, 397, 121-128(1999).

    [31] Mitschke U, Bäuerle P. The electroluminescence of organic materials[J]. Journal of Materials Chemistry, 10, 1471-1507(2000).

    [32] Wang L D, Zhao Z F, Wei C et al. Review on the electroluminescence study of lanthanide complexes[J]. Advanced Optical Materials, 7, 1801256(2019).

    [33] Zhang D W, Li M, Chen C F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes[J]. Chemical Society Reviews, 49, 1331-1343(2020).

    [34] Shi Y Z. Design and synthesis of new thermally activated delayed fluorescent materials for high efficiency undoped organic light emitting diodes[D](2018).

    [35] Wu L. A new type of thermally activated delayed fluorescent material was designed and synthesized for high efficiency undoped organic light emitting diodes[D](2021).

    [36] Gong P. Synthesis, self-assembly, fluorescence sensory and electroluminescent properties of indole-fused heterocyclic compounds[D](2016).

    [37] Hu D, Xu X R, Miao J S et al. A stretchable alternating current electroluminescent fiber[J]. Materials, 11, 184(2018).

    [38] You B, Kim Y, Ju B K et al. Highly stretchable and waterproof electroluminescence device based on superstable stretchable transparent electrode[J]. ACS Applied Materials & Interfaces, 9, 5486-5494(2017).

    [39] Park H J, Kim S, Lee J H et al. Self-powered motion-driven triboelectric electroluminescence textile system[J]. ACS Applied Materials & Interfaces, 11, 5200-5207(2019).

    [40] Wang J X, Yan C Y, Cai G F et al. Extremely stretchable electroluminescent devices with ionic conductors[J]. Advanced Materials, 28, 4490-4496(2016).

    [41] Ma F X, Lin Y, Yuan W et al. Fully printed, large-size alternating current electroluminescent device on fabric for wearable textile display[J]. ACS Applied Electronic Materials, 3, 1747-1757(2021).

    [42] Hu B, Li D P, Ala O et al. Textile-based flexible electroluminescent devices[J]. Advanced Functional Materials, 21, 305-311(2011).

    [43] Park S J, Kim T S, Jang T S. Method of fabricating bottom chassis, bottom chassis fabricated by the method of fabricating the same, method of fabricating liquid crystal display, and liquid crystal display fabricated by the method of fabricating the same[P].

    [44] Zhang Y Y. Display textiles: illuminating the way we live[J]. Science China Chemistry, 64, 1115-1116(2021).

    [45] Zhang Z T, Shi X, Lou H Q et al. A stretchable and sensitive light-emitting fabric[J]. Journal of Materials Chemistry C, 5, 4139-4144(2017).

    [46] Mi H B, Zhong L N, Tang X X et al. Electroluminescent fabric woven by ultrastretchable fibers for arbitrarily controllable pattern display[J]. ACS Applied Materials & Interfaces, 13, 11260-11267(2021).

    [47] Shi X, Zuo Y, Zhai P et al. Large-area display textiles integrated with functional systems[J]. Nature, 591, 240-245(2021).

    [48] Zhang J J, Zou Q, Tian H. Photochromic materials: more than meets the eye[J]. Advanced Materials, 25, 378-399(2013).

    [49] Han S D, Hu J X, Wang G M. Recent advances in crystalline hybrid photochromic materials driven by electron transfer[J]. Coordination Chemistry Reviews, 452, 214304(2022).

    [50] Ma Y J, Hu J X, Han S D et al. Manipulating on/off single-molecule magnet behavior in a Dy(III)-based photochromic complex[J]. Journal of the American Chemical Society, 142, 2682-2689(2020).

    [51] Ru Y F, Shi Z Y, Zhang J H et al. Recent progress of photochromic materials towards photocontrollable devices[J]. Materials Chemistry Frontiers, 5, 7737-7758(2021).

    [52] Wang S F, Fan W R, Liu Z C et al. Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties[J]. Journal of Materials Chemistry C, 6, 191-212(2018).

    [53] Tamai N, Miyasaka H. Ultrafast dynamics of photochromic systems[J]. Chemical Reviews, 100, 1875-1890(2000).

    [54] Hui B. Formation and analysis of photic or magnetic responsive property on a wood surface[D](2017).

    [55] Chen Y H, Liu Y F, Lu S et al. Photostimulated spiropyran for instantaneous visualization of thermal field distribution and flow pattern[J]. Journal of the American Chemical Society, 142, 20066-20070(2020).

    [56] Jiang J W, Zhang P S, Liu L et al. Dual photochromics-contained photoswitchable multistate fluorescent polymers for advanced optical data storage, encryption, and photowritable pattern[J]. Chemical Engineering Journal, 425, 131557(2021).

    [57] Chen H H, Hou A Q, Zheng C W et al. Light- and humidity-responsive chiral nematic photonic crystal films based on cellulose nanocrystals[J]. ACS Applied Materials & Interfaces, 12, 24505-24511(2020).

    [58] Fan J, Wang W, Yu D. Preparation of photochromic wool fabrics based on thiol-halogen click chemistry[J]. Dyes and Pigments, 151, 348-355(2018).

    [59] Shen X Y, Ge M Q, Jin Y. Facile development of novel photochromic luminescent composite fiber for anticounterfeiting and wearable UV detector[J]. Journal of Luminescence, 252, 119373(2022).

    [60] Shen X Y, Hu Q, Jin Y et al. Long-lived luminescence and photochromic cellulose acetate-based fiber: preparation, characterization, and potential applications[J]. Cellulose, 30, 2181-2195(2023).

    [61] Wang W W, Yi L T, Zheng Y Z et al. Photochromic and mechanochromic cotton fabric for flexible rewritable media based on acrylate latex with spiropyran cross-linker[J]. Composites Communications, 37, 101455(2023).

    [62] Zheng C W, Han H J, Gao A Q et al. Photosensitivity enhancement of spiropyran-containing functional molecules by introducing flexible spacers and their application in smart color-changing textiles[J]. Fibers and Polymers, 24, 445-457(2023).

    [63] Karanov B, Chagnon M, Thouin F et al. End-to-end deep learning of optical fiber communications[J]. Journal of Lightwave Technology, 36, 4843-4855(2018).

    [64] Dragic P D, Cavillon M, Ballato J. Materials for optical fiber lasers: a review[J]. Applied Physics Reviews, 5, 41301(2018).

    [65] Joe H E, Yun H, Jo S H et al. A review on optical fiber sensors for environmental monitoring[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 173-191(2018).

    [66] Kareem F Q, Zeebaree S R M, Dino H I et al. A survey of optical fiber communications: challenges and processing time influences[J]. Asian Journal of Research in Computer Science, 48-58(2021).

    [67] Lu P, Lalam N, Badar M et al. Distributed optical fiber sensing: review and perspective[J]. Applied Physics Reviews, 6, 041302(2019).

    [68] Su Y. Research on key technologies of intelligent optical fiber optoelectronics[D](2012).

    [69] Chen J H. Optoelectronic devices with two-dimensional materials integrated with Shi Ying fiber[D](2018).

    [70] Zhao Y, Lin Z Y, Dong S et al. Review of wearable optical fiber sensors: drawing a blueprint for human health monitoring[J]. Optics & Laser Technology, 161, 109227(2023).

    [71] Kaushik S, Pandey A, Tiwari U K et al. A label-free fiber optic biosensor for Salmonella Typhimurium detection[J]. Optical Fiber Technology, 46, 95-103(2018).

    [72] Du C, Dutta S, Kurup P et al. A review of railway infrastructure monitoring using fiber optic sensors[J]. Sensors and Actuators A: Physical, 303, 111728(2020).

    [73] Guo J J, Zhou B Q, Zong R et al. Stretchable and highly sensitive optical strain sensors for human-activity monitoring and healthcare[J]. ACS Applied Materials & Interfaces, 11, 33589-33598(2019).

    [74] Kumari C R U, Samiappan D, Kumar R et al. Fiber optic sensors in ocean observation: a comprehensive review[J]. Optik, 179, 351-360(2019).

    [75] Wang Y Y, Li M. Research on optical fiber and intelligent textile based on optical fiber[J]. Progress in Textile Science & Technology, 1-3, 20(2021).

    [76] Quandt B M, Braun F, Ferrario D et al. Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres[J]. Journal of the Royal Society Interface, 14, 20170060(2017).

    [77] Nag A, Simorangkir R B V B, Valentin E et al. A transparent strain sensor based on PDMS-embedded conductive fabric for wearable sensing applications[J]. IEEE Access, 6, 71020-71027(2018).

    [78] Li J H, Chen J H, Xu F. Sensitive and wearable optical microfiber sensor for human health monitoring[J]. Advanced Materials Technologies, 3, 1800296(2018).

    [79] Gong J X. Preparation and electrochemical properties of Ni-Co-based electrode materials[D](2022).

    [80] Xu S Y. Study on polymer and supramolecular electrolyte for water-based supercapacitors[D](2022).

    [81] Han L Y. Preparation of transition metal sulfur/phosphorus compound electrode materials and its application in supercapacitors[D](2022).

    [82] Li M, Li Z Q, Ye X R et al. Tendril-inspired 900% ultrastretching fiber-based Zn-ion batteries for wearable energy textiles[J]. ACS Applied Materials & Interfaces, 13, 17110-17117(2021).

    [83] Song W J, Kong M, Cho S et al. Stand-alone intrinsically stretchable electronic device platform powered by stretchable rechargeable battery[J]. Advanced Functional Materials, 30, 2003608(2020).

    [84] Shao G W. Research on flexible supercapacitor based on textile structure[D](2021).

    [85] Xu R Q, Liu P, Ji G H et al. Versatile strategy to design flexible planar-integrated microsupercapacitors based on Co3O4-decorated laser-induced graphene[J]. ACS Applied Energy Materials, 3, 10676-10684(2020).

    [86] Hu X L, Tian M W, Xu T L et al. Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear[J]. ACS Nano, 14, 559-567(2020).

    [87] Zhao P, Wang N, Yao M Q et al. Hydrothermal electrodeposition incorporated with CVD-polymerisation to tune PPy@ MnO2 interlinked core-shell nanowires on carbon fabric for flexible solid-state asymmetric supercapacitors[J]. Chemical Engineering Journal, 380, 122488(2020).

    [88] Zhou R T, Fu Y X, Chao K A et al. Green synthesis of nanoarchitectured nickel fabrics as high performance electrodes for supercapacitors[J]. Renewable Energy, 135, 1445-1451(2019).

    [89] Jin K L, Zhou M, Zhao H et al. Electrodeposited CuS nanosheets on carbonized cotton fabric as flexible supercapacitor electrode for high energy storage[J]. Electrochimica Acta, 295, 668-676(2019).

    [90] Liu W N, Li X X, Li W J et al. High-performance supercapacitors based on free-standing SiC@PEDOT nanowires with robust cycling stability[J]. Journal of Energy Chemistry, 66, 30-37(2022).

    [91] Terada T, Toyoura M, Sato T et al. Functional fabric pattern: examining the case of pressure detection and localization[J]. IEEE Transactions on Industrial Electronics, 66, 8224-8234(2018).

    [92] Tian J W. Research on sensitive nanomaterials and sensor technology of ultra-low concentration hydrogen[D](2022).

    [93] Zuo Y. Construction and application of electrochemical sensor based on graphene-EDTA nano material[D](2022).

    [94] Guo Z Y. Design, manufacture and performance research of direct writing 3D printing strain sensor[D](2022).

    [95] Liu W Q. Construction of self-driven sensor based on friction nano-power generation and its application in respiratory/fire monitoring[D](2023).

    [96] Lan L Y, Zhao F N, Yao Y et al. One-step and spontaneous in situ growth of popcorn-like nanostructures on stretchable double-twisted fiber for ultrasensitive textile pressure sensor[J]. ACS Applied Materials & Interfaces, 12, 10689-10696(2020).

    [97] Lim S J, Bae J H, Han J H et al. Foldable and washable fully textile-based pressure sensor[J]. Smart Materials and Structures, 29, 055010(2020).

    [98] Chen M, Ouyang J Y, Jian A J et al. Imperceptible, designable, and scalable braided electronic cord[J]. Nature Communications, 13, 7097(2022).

    [99] Wang B H, Facchetti A. Mechanically flexible conductors for stretchable and wearable E-skin and E-textile devices[J]. Advanced Materials, 31, 1901408(2019).

    [100] Ouyang Z F, Xu D W, Yu H Y et al. Novel ultrasonic-coating technology to design robust, highly sensitive and wearable textile sensors with conductive nanocelluloses[J]. Chemical Engineering Journal, 428, 131289(2022).

    [101] Dong K, Wang Y C, Deng J N et al. A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors[J]. ACS Nano, 11, 9490-9499(2017).

    [102] Wang S H, Lin L, Wang Z L. Triboelectric nanogenerators as self-powered active sensors[J]. Nano Energy, 11, 436-462(2015).

    [103] Asif M, Aziz A, Ashraf G et al. Unveiling microbiologically influenced corrosion engineering to transfigure damages into benefits: a textile sensor for H2O2 detection in clinical cancer tissues[J]. Chemical Engineering Journal, 427, 131398(2022).

    [104] Ouyang Z F, Xu D W, Yu H Y et al. Novel ultrasonic-coating technology to design robust, highly sensitive and wearable textile sensors with conductive nanocelluloses[J]. Chemical Engineering Journal, 428, 131289(2022).

    [105] Ye X R, Shi B H, Li M et al. All-textile sensors for Boxing punch force and velocity detection[J]. Nano Energy, 97, 107114(2022).

    [106] Zhang J W, Zhang Y, Li Y Y et al. Textile-based flexible pressure sensors: a review[J]. Polymer Reviews, 62, 65-94(2022).

    [107] Shuai X T, Zhu P L, Zeng W J et al. Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure[J]. ACS Applied Materials & Interfaces, 9, 26314-26324(2017).

    [108] Lian Y L, Yu H, Wang M Y et al. Ultrasensitive wearable pressure sensors based on silver nanowire-coated fabrics[J]. Nanoscale Research Letters, 15, 70(2020).

    [109] Lee G, Son J H, Lee S et al. Fingerpad-inspired multimodal electronic skin for material discrimination and texture recognition[J]. Advanced Science, 8, 2002606(2021).

    [110] Juarez-Perez E J, Ono L K, Maeda M et al. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability[J]. Journal of Materials Chemistry A, 6, 9604-9612(2018).

    [111] Dupré O, Vaillon R, Green A M[M]. Thermal behavior of photovoltaic devices(2016).

    [112] Wang L, Huang L, Tan W C et al. 2D photovoltaic devices: progress and prospects[J]. Small Methods, 2, 1700294(2018).

    [113] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 9, 205-213(2010).

    [114] Tonui P, Oseni S O, Sharma G et al. Perovskites photovoltaic solar cells: an overview of current status[J]. Renewable and Sustainable Energy Reviews, 91, 1025-1044(2018).

    [115] Chueh C C, Chen C I, Su Y et al. Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives[J]. Journal of Materials Chemistry A, 7, 17079-17095(2019).

    [116] Xiang S W, Zhang N N, Fan X. From fiber to fabric: progress towards photovoltaic energy textile[J]. Advanced Fiber Materials, 3, 76-106(2021).

    [117] Zhang N N, Huang F, Zhao S L et al. Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics[J]. Matter, 2, 1260-1269(2020).

    [118] Zhou Z Y, Zhang Q C, Sun J A et al. Metal-organic framework derived spindle-like carbon incorporated α-Fe2O3 grown on carbon nanotube fiber as anodes for high-performance wearable asymmetric supercapacitors[J]. ACS Nano, 12, 9333-9341(2018).

    [119] Saar K L, Bombelli P, Lea-Smith D J et al. Enhancing power density of biophotovoltaics by decoupling storage and power delivery[J]. Nature Energy, 3, 75-81(2018).

    [120] Balilonda A, Li Z Q, Luo C Y et al. Chlorine-rich substitution enabled 2D3D hybrid perovskites for high efficiency and stability in Sn-based fiber-shaped perovskite solar cells[J]. Advanced Fiber Materials, 5, 296-311(2023).

    [121] Zhang N N, Chen J, Huang Y et al. A wearable all-solid photovoltaic textile[J]. Advanced Materials, 28, 263-269(2016).

    [122] Liu P, Gao Z, Xu L M et al. Polymer solar cell textiles with interlaced cathode and anode fibers[J]. Journal of Materials Chemistry A, 6, 19947-19953(2018).

    [123] Saravanapavanantham M, Mwaura J, Bulović V. Printed organic photovoltaic modules on transferable ultra-thin substrates as additive power sources[J]. Small Methods, 7, 2200940(2023).

    Tools

    Get Citation

    Copy Citation Text

    Gaoming Jiang, Chaoyu Chen, Lijun Chen, Pibo Ma. Wearable Smart Textiles Using Optoelectronic Techniques[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1316004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Jun. 5, 2023

    Accepted: Jun. 28, 2023

    Published Online: Jul. 28, 2023

    The Author Email: Jiang Gaoming (jgm@jiangnan.edu.cn)

    DOI:10.3788/LOP231453

    Topics