Infrared and Laser Engineering, Volume. 48, Issue 3, 317005(2019)
An improved material removal model for robot polishing based on neural networks
[1] [1] Cully A, Clune J, Tarapore D, et al. Robots that can adapt like animals[J]. Nature, 2014, 521(7553): 503-507.
[2] [2] Peng Lu, Man Chen. Analysis of the application of industrial robot in intelligent manufacturing[J]. Metallurgical Automation, 2018(S1): 134.
[3] [3] Seok J, Sukam C P, Kim A T, et al. Material removal model for chemical-mechanical polishing considering wafer flexibility and edge effects[J]. Wear, 2004, 257(5-6): 496-508.
[4] [4] Eder S J, Cihak-Bayr U, Pauschitz A. Nanotribological simulations of multi-grit polishing and grinding[J]. Wear, 2015, 340-341: 25-30.
[5] [5] Xu H, Komvopoulos K. A quasi-static mechanics analysis of three-dimensional nanoscale surface polishing[J]. Journal of Manufacturing Science & Engineering, 2010, 132(3): 321-333.
[6] [6] Cao Z C, Chi F C. Theoretical modelling and analysis of the material removal characteristics in fluid jet polishing[J]. International Journal of Mechanical Sciences, 2014, 89: 158-166.
[7] [7] Tichy J. Contact Mechanics and lubrication hydrodynamics of chemical mechanical polishing[J]. Tree Physiology, 1999, 25(10): 1243-1251.
[8] [8] Preston F W. The theory and design of plate glass polishing machines[J]. J Soc Glass Tech, 1927, 11: 214.
[9] [9] Buijs M, Houten K V. A model for lapping of glass[J]. Journal of Materials Science, 1993, 28(11):3014-3020.
[10] [10] Matsuo H, Ishikawa A, Kikkawa T. Role of frictional force on the polishing rate of Cu chemical mechanical polishing[J]. Japanese Journal of Applied Physics, 2004, 43(4):1813-1819.
[11] [11] Shorey A B. Mechanisms of material removal in magnetorh-eological finishing (MRF) of glass[D]. Rochester: University of Rochester, 2000.
[12] [12] Wang C C, Lin S C, Hong H. A material removal model for polishing glass-ceramic and aluminum magnesium storage disks[J]. International Journal of Machine Tools & Manufacture, 2002, 42(8): 979-984.
[13] [13] Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
[14] [14] Ghahramani Z. Probabilistic machine learning and artificial intelligence[J]. Nature, 2015, 521(7553): 452-459.
[15] [15] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[16] [16] Reza K S, Masoud G, Mohammad G, et al. Deep networks can resemble human feed-forward vision in invariant object recognition[J]. Scientific Reports, 2016, 6: 32672.
[17] [17] Yang Nan, Nan Lin, Zhang Dingyi, et al. Research on image interpretation based on deep learning[J]. Infrared and Laser Engineering, 2018, 47(2): 0203002. (in Chinese)
[18] [18] Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning[M]. New York: Springer, 2009.
[19] [19] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision, 2016: 770-778.
Get Citation
Copy Citation Text
Yu Yi, Kong Lingbao, Zhang Haitao, Xu Min, Wang Liping. An improved material removal model for robot polishing based on neural networks[J]. Infrared and Laser Engineering, 2019, 48(3): 317005
Category: 光电测量
Received: Nov. 5, 2018
Accepted: Dec. 15, 2018
Published Online: Apr. 6, 2019
The Author Email: