Journal of the Chinese Ceramic Society, Volume. 51, Issue 6, 1530(2023)

Structure and Energy Storage Characteristics of NaNbO3-CaZrO3-Bi0.5Na0.5TiO3 Ternary System Ceramics

WANG Zixuan*, LI Zhuo, ZHANG Jiayong, ZHANG Jing, and NIU Yanhui
Author Affiliations
  • [in Chinese]
  • show less
    References(46)

    [1] [1] YAO Z , SONG Z, HAO H, et al. Homogeneous/inhomogeneous- structured dielectrics and their energy-storage performances[J]. Adv Mater, 2017, 29(20): 1601727.

    [2] [2] LI Q, YAO F Z, LIU Y, et al. High-temperature dielectric materials for electrical energy storage[J]. Annu Rev Mater Res, 2018, 48: 219-243.

    [3] [3] LIU Z, LU T, YE J, et al. Antiferroelectrics for energy storage applications: A review[J]. Adv Mater Technol, 2018, 3(9): 1800111.

    [4] [4] LIU P, FAN B, YANG G, et al. High energy density at high temperature in PLZST antiferroelectric ceramics[J]. J Mater Chem C, 2019, 7(15): 4587-4594.

    [5] [5] ZUO Z, ZHAN Q , CHEN B, et al. Enhanced energy storage behaviors in free-standing antiferroelectric Pb(Zr0.95Ti0.05)O3 thin membranes[J]. Chin Phys B, 2016, 25(8): 087702.

    [6] [6] GU J, SUN Q, CHEN X, et al. Energy storage performance of sandwich structured Pb(Zr0.4Ti0.6)O3/BaZr0.2Ti0.8O3/Pb(Zr0.4Ti0.6)O3 films[J]. Crystals, 2019, 9(11): 575.

    [7] [7] HAO X, ZHAI J, KONG L, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials[J]. Prog Mater Sci, 2014, 63: 1-57.

    [8] [8] SHROUT T R, ZHANG S. Lead-free piezoelectric ceramics: alternatives for PZT?[J]. J Electroceram, 2007, 19(1): 185.

    [9] [9] GUO J, YANG T. Giant energy storage density in Ba, La co-doped PbHfO3-based antiferroelectric ceramics by a rolling process[J]. J Alloys Compd, 2021, 888: 161539.

    [10] [10] LIU Y, LIU S, YANG T, et al. Achieving high energy storage density of PLZS antiferroelectric within a wide range of components[J]. J Mater Sci, 2021, 56(10): 6073-6082.

    [11] [11] JAFFE B, ROTH R S, MARZULLO S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics[J]. J Appl Phys, 1954, 25(6): 809-810.

    [12] [12] HAERTLING G H, LAND C E. Recent improvements in the optical and electrooptic properties of PLZT ceramics[J]. IEEE Trans Sonics Ultrason, 1972, 19(2): 269-280.

    [13] [13] WANG B, LUO L, JIANG X, et al. Energy-storage properties of (1-x)Bi0.47Na0.47Ba0.06TiO3-xKNbO3 lead-free ceramics[J]. J Alloys Compd, 2014, 585: 14-18.

    [14] [14] MALIK R A, HUSSAIN A, ZAMAN A, et al. Structure-property relationship in lead-free A- and B-site co-doped Bi0.5(Na0.84K0.16)0.5TiO3-SrTiO3 incipient piezoceramics[J]. RSC Adv, 2015, 5(117): 96953-96964.

    [15] [15] LI L, FAN P, WANG M, et al. Review of lead-free Bi-based dielectric ceramics for energy-storage applications[J]. J Phys D: Appl Phys, 2021, 54(29): 293001.

    [16] [16] YAN F, BAI H, SHI Y, et al. Sandwich structured lead-free ceramics based on Bi0.5Na0.5TiO3 for high energy storage[J]. Chem Eng J, 2021, 425: 130669.

    [17] [17] SUN Y, ZHOU Y, LU Q, et al. High energy storage efficiency with fatigue resistance and thermal stability in lead-free Na0.5K0.5 NbO3/BiMnO3 solid-solution films[J]. Phys Status Solidi RRL, 2018, 12(2): 1700364.

    [18] [18] WANG D, WANG G, MURAKAMI S, et al. BiFeO3-BaTiO3: a new generation of lead-free electroceramics[J]. J Adv Dielect, 2018, 8(6): 1830004.

    [19] [19] HU Q, TIAN Y, ZHU Q, et al. Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction[J]. Nano Energy, 2020, 67: 104264.

    [20] [20] QIAO Z, LI T, QI H, et al. Excellent energy storage properties in NaNbO3-based lead-free ceramics by modulating antiferrodistortive of P phase[J]. J Alloys Compd, 2022, 898: 162934.

    [21] [21] LI Z, WANG C, WANG Z, et al. Core-shell structure and dielectric properties of Ba0.6Sr0.4TiO3@ Fe2O3 ceramics prepared by co-precipitation method[J]. Crystals, 2021, 11(6): 623.

    [22] [22] CHEN Q, SHEN Y, ZHANG S, et al. Polymer-based dielectrics with high energy storage density[J]. Annu Rev Mater Res, 2015, 45: 433-458.

    [23] [23] LIU Z, LU J MAO Y, et al. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases[J]. J Eur Ceram Soc, 2018, 38(15): 4939-4945.

    [24] [24] ZHOU M, LIANG R, ZHOU Z, et al. Novel sodium niobate-based lead-free ceramics as new environment-friendly energy storage materials with high energy density, high power density, and excellent stability[J]. ACS Sustainable Chem Eng, 2018, 6(10): 12755-12765.

    [25] [25] QU N, DU H, HAO X. A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics[J]. J Mater Chem C, 2019, 7(26): 7993-8002.

    [26] [26] CHEN J, YE D, WU X, et al. Large enhancement of discharge energy density of polymer nanocomposites filled with one-dimension core-shell structured NaNbO3@SiO2 nanowires[J]. Compos A Appl Sci Manuf, 2020, 133: 105832.

    [27] [27] LI S Y, SHI P, ZHU X P, et al. Enhanced energy storage properties in lead-free NaNbO3-Sr0.7Bi0.2TiO3-BaSnO3 ternary ceramic[J]. J Mater Sci, 2021, 56(20): 11922-11931.

    [28] [28] YU Y, GAO F, WEYLAND F, et al. Significantly enhanced room temperature electrocaloric response with superior thermal stability in sodium niobate-based bulk ceramics[J]. J Mater Chem A, 2019, 7(19): 11665-11672.

    [29] [29] DONG X, LI X, CHEN X, et al. High energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement[J]. J Materiomics, 2021, 7(3): 629-639.

    [31] [31] XIE A, FU J, ZUO R, et al. NaNbO3-CaTiO3 lead-free relaxor antiferroelectric ceramics featuring giant energy density, high energy efficiency and power density[J]. Chem Eng J, 2022, 429: 132534.

    [32] [32] XIE A, QI H, ZUO R, et al. An environmentally-benign NaNbO3 based perovskite antiferroelectric alternative to traditional lead-based counterparts[J]. J Mater Chem C, 2019, 7(48): 15153-15161.

    [33] [33] WANG X, REN P, REN D, et al. B-site acceptor doped AgNbO3 lead-free antiferroelectric ceramics: the role of dopant on microstructure and breakdown strength[J]. Ceram Int, 2021, 47(3): 3699-3705.

    [34] [34] YE J, WANG G, ZHOU M, et al. Excellent comprehensive energy storage properties of novel lead-free NaNbO3-based ceramics for dielectric capacitor applications[J]. J Mater Chem C, 2019, 7(19): 5639-5645.

    [35] [35] QIAO X, ZHANG F, WU D, et al. Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics[J]. Chem Eng J, 2020, 388: 124158.

    [36] [36] FAN P, ZHANG S, XU J, et al. Relaxor/antiferroelectric composites: a solution to achieve high energy storage performance in lead-free dielectric ceramics[J]. J Mater Chem C, 2020, 8(17): 5681-5691.

    [37] [37] APETZ R, VAN BRUGGEN M P B. Transparent alumina: a light-scattering model[J]. J Am Ceram Soc, 2003, 86(3): 480-486.

    [38] [38] WEI T, LIU K, FAN P, et al. Novel NaNbO3-Sr0.7Bi0.2TiO3 lead-free dielectric ceramics with excellent energy storage properties[J]. Ceram Int, 2021, 47(3): 3713-3719.

    [39] [39] TIAN A, ZUO R, QI H, et al. Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3lead-free ceramics through regulating the antiferroelectric phase structure[J]. J Mater Chem A, 2020, 8(17): 8352-8359.

    [40] [40] YE J, WANG G, CHEN X, et al. Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics[J]. J Materiomics, 2021, 7(2): 339-346.

    [41] [41] SHI R, PU Y, WANG W, et al. A novel lead-free NaNbO3-Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability[J]. J Alloys Compd, 2020, 815: 152356.

    [42] [42] ZHOU M, LIANG R, ZHOU Z, et al. Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy[J]. J Mater Chem A, 2018, 6(37): 17896-17904.

    [43] [43] WANG J, FAN H, WANG M, et al. Significantly enhanced energy storage performance in Sm-doped 0.88NaNbO3-0.12Sr0.7Bi0.2TiO3 lead-free ceramics[J]. Ceram Int, 2021, 47(13): 17964-17970.

    [44] [44] DONG X, LI X, CHEN X, et al. High energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement[J]. J Materiomics, 2021, 7(3): 629-639.

    [45] [45] YE J, WANG G, CHEN X, et al. Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics[J]. J Materiomics, 2021, 7(2): 339-346.

    [46] [46] LI D, SHEN Z, LI Z, et al. Optimization of polarization behavior in (1-x)BSBNT-xNN ceramics for pulsed power capacitors[J]. J Mater Chem C, 2020, 8(23): 7650-7657.

    [47] [47] QU N, DU H, HAO X. A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics[J]. J Mater Chem C, 2019, 7(26): 7993-8002.

    Tools

    Get Citation

    Copy Citation Text

    WANG Zixuan, LI Zhuo, ZHANG Jiayong, ZHANG Jing, NIU Yanhui. Structure and Energy Storage Characteristics of NaNbO3-CaZrO3-Bi0.5Na0.5TiO3 Ternary System Ceramics[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1530

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 9, 2023

    Accepted: --

    Published Online: Aug. 13, 2023

    The Author Email: Zixuan WANG (1848736995@qq.com)

    DOI:

    CSTR:32186.14.

    Topics