Laser & Optoelectronics Progress, Volume. 61, Issue 1, 0106001(2024)

Research Progress in Photon-Assisted Terahertz Communication Technology (Invited)

Jianjun Yu*
Author Affiliations
  • School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • show less
    References(83)

    [1] Akyildiz I F, Jornet J M, Han C. TeraNets: ultra-broadband communication networks in the terahertz band[J]. IEEE Wireless Communications, 21, 130-135(2014).

    [3] Moon S R, Kim E S, Sung M et al. 6G indoor network enabled by photonics- and electronics-based sub-THz technology[J]. Journal of Lightwave Technology, 40, 499-510(2021).

    [4] Yu J J, Wang Y Y, Ding J J et al. Broadband photon-assisted terahertz communication and sensing[C](2022).

    [5] Rodriguez-Vazquez P, Grzyb J, Heinemann B et al. A QPSK 110-Gb/s polarization-diversity MIMO wireless link with a 220-255 GHz tunable LO in a SiGe HBT technology[J]. IEEE Transactions on Microwave Theory and Techniques, 68, 3834-3851(2020).

    [6] Asada M, Orihashi N, Suzuki S. Voltage controlled harmonic oscillation around 1 THz in resonant tunneling diodes integrated with slot antennas[C], 321-324(2006).

    [7] Moeller L, Federici J, Su K. 2. 5 Gbit/s duobinary signaling with narrow bandwidth 0.625 terahertz source[J]. Electronics Letters, 47, 856(2011).

    [8] Zhao M M, Zhou W, Yu J J. 3. 5 Gbit/s OOK THz signal delivery over 88 cm free-space at 441.504 GHz[J]. Microwave and Optical Technology Letters, 60, 1435-1439(2018).

    [9] Castro C, Elschner R, Merkle T et al. Long-range high-speed THz-wireless transmission in the 300 GHz band[C](2020).

    [10] Kawanishi T. THz and photonic seamless communications[J]. Journal of Lightwave Technology, 37, 1671-1679(2019).

    [11] Li K L, Yu J G. Photonics-aided terahertz-wave wireless communication[J]. Journal of Lightwave Technology, 40, 4186-4195(2022).

    [12] Ding J, Li W, Zhang L et al. Demonstration of 6.4-Tbit/s THz-wave signal transmission over 20-km wired and 54-m wireless distance[C](2022).

    [13] Ding J J, Zhang L, Liu J X et al. THz-over-fiber transmission with a net rate of 5.12 Tbps in an 80 channel WDM system[J]. Optics Letters, 47, 3103-3106(2022).

    [14] Tan Y X, Zhao F, He M H et al. Transmission of high-frequency terahertz band signal beyond 300 GHz over metallic hollow core fiber[J]. Journal of Lightwave Technology, 40, 700-707(2022).

    [15] Zhu M, Zhang J, Yu J J et al. Demonstration of record-high 352-Gbps terahertz wired transmission over hollow-core fiber at 325 GHz[J]. Science China Information Sciences, 65, 237-238(2021).

    [16] Ding J J, Tan Y X, Wang Y Y et al. 352-Gbit/s single line rate THz wired transmission based on PS-4096QAM employing hollow-core fiber[J]. Digital Communications and Networks, 9, 717-722(2023).

    [17] Nagatsuma T, Carpintero G. Recent progress and future prospect of photonics-enabled terahertz communications research[J]. IEICE Transactions on Electronics, E98.C, 1060-1070(2015).

    [18] Xu Y C, Zhuge Q B, Fan Y Y et al. Coherent digital-analog radio-over-fiber (DA-RoF) system with a CPRI-equivalent data rate beyond 1 Tb/s for fronthaul[J]. Optics Express, 30, 29409-29420(2022).

    [19] Ding J J, Wang M X, Li W P et al. Wireless transmission of a 200-m PS-64QAM THz-wave signal using a likelihood-based selection radius-directed equalizer[J]. Optics Letters, 47, 3904-3907(2022).

    [20] Ding J, Li W, Wang Y et al. Demonstration of 32-Gbit/s terahertz-wave signal transmission over 400-m wireless distance[C](2022).

    [21] Li X Y, Yu J J, Chang G K. Photonics-assisted technologies for extreme broadband 5G wireless communications[J]. Journal of Lightwave Technology, 37, 2851-2865(2019).

    [22] Yu J J, Wei Y. Digital signal processing for high-speed THz communications[J]. Chinese Journal of Electronics, 31, 534-546(2022).

    [23] Wang C, Wang K H, Tan Y X et al. High-speed terahertz band radio-over-fiber system using hybrid time-frequency domain equalization[J]. IEEE Photonics Technology Letters, 34, 559-562(2022).

    [24] Wang K H, Li X Y, Kong M et al. Probabilistically shaped 16QAM signal transmission in a photonics-aided wireless terahertz-wave system[C](2018).

    [25] Wang K H, Yu J J, Chien H C et al. Transmission of probabilistically shaped 100 GBd DP-16QAM over 5, 200 km in a 100 GHz spacing WDM system[C](2019).

    [26] Zheng L, Lops M, Eldar Y C et al. Radar and communication coexistence: an overview: a review of recent methods[J]. IEEE Signal Processing Magazine, 36, 85-99(2019).

    [27] Mishra K V, Shankar M R B, Koivunen V et al. Toward millimeter-wave joint radar communications: a signal processing perspective[J]. IEEE Signal Processing Magazine, 36, 100-114(2019).

    [28] Hassanien A, Amin M G, Zhang Y D et al. Signaling strategies for dual-function radar communications: an overview[J]. IEEE Aerospace and Electronic Systems Magazine, 31, 36-45(2016).

    [29] Liu Y J, Liao G S, Xu J W et al. Adaptive OFDM integrated radar and communications waveform design based on information theory[J]. IEEE Communications Letters, 21, 2174-2177(2017).

    [31] Pan C, Wang A, Liu J et al. Technology analysis of integration of wireless sensing and communication[J]. Radio Communication Technology, 47, 143-148(2021).

    [32] Jia S, Wang S W, Liu K X et al. A unified system with integrated generation of high-speed communication and high-resolution sensing signals based on THz photonics[J]. Journal of Lightwave Technology, 36, 4549-4556(2018).

    [33] Li X Y, Yu J J, Chi N et al. Antenna polarization diversity for high-speed polarization multiplexing wireless signal delivery at W-band[J]. Optics Letters, 39, 1169-1172(2014).

    [34] Jia S, Pang X D, Ozolins O et al. 0.4 THz photonic-wireless link with 106 Gb/s single channel bitrate[J]. Journal of Lightwave Technology, 36, 610-616(2018).

    [35] Li X Y, Yu J J, Wang K H et al. 120 Gb/s wireless terahertz-wave signal delivery by 375 GHz-500 GHz multi-carrier in a 2×2 MIMO system[C], 606-611(2018).

    [36] Li X Y, Yu J J, Zhao L et al. 1-Tb/s millimeter-wave signal wireless delivery at D-band[J]. Journal of Lightwave Technology, 37, 196-204(2019).

    [37] Wang S W, Lu Z J, Li W et al. 26.8-m THz wireless transmission of probabilistic shaping 16-QAM-OFDM signals[J]. APL Photonics, 5, 056105(2020).

    [38] Harter T, Füllner C, Kemal J N et al. Generalized Kramers-Kronig receiver for coherent terahertz communications[J]. Nature Photonics, 14, 601-606(2020).

    [39] Ding J J, Li W P, Wang Y Y et al. 104-m terahertz-wave wireless transmission employing 124.8-Gbit/s PS-256QAM signal[C], M3C.3(2022).

    [40] Ding J J, Li W P, Wang Y Y et al. 124.8-Gbit/s PS-256QAM signal wireless delivery over 104 m in a photonics-aided terahertz-wave system[J]. IEEE Transactions on Terahertz Science and Technology, 12, 409-414(2022).

    [41] Castro C, Nellen S, Elschner R et al. 32 GBd 16QAM wireless transmission in the 300 GHz band using a PIN diode for THz up conversion[C], M4F.5(2019).

    [42] Li X Y, Yu J J, Zhao L et al. 132-gb/s photonics-aided single-carrier wireless terahertz-wave signal transmission at 450 GHz enabled by 64 QAM modulation and probabilistic shaping[C](2019).

    [43] Jia S, Lo M C, Zhang L et al. Integrated dual-DFB laser for 408 GHz carrier generation enabling 131 Gbit/s wireless transmission over 10.7 meters[C], Th1C.2(2019).

    [44] Wang C, Lu B, Lin C X et al. 0.34-THz wireless link based on high-order modulation for future wireless local area network applications[J]. IEEE Transactions on Terahertz Science and Technology, 4, 75-85(2014).

    [45] Kallfass I, Boes F, Messinger T et al. 64 Gbit/s transmission over 850 m fixed wireless link at 240 GHz carrier frequency[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 36, 221-233(2015).

    [46] Fujishima M, Amakawa S, Takano K et al. Terahertz CMOS design for low-power and high-speed wireless communication[J]. IEICE Transactions on Electronics, E98.C, 1091-1104(2015).

    [47] Wu Q Y, Lin C X, Lu B et al. A 21 km 5 Gbps real time wireless communication system at 0.14 THz[C](2017).

    [48] Castro C, Elschner R, Merkle T et al. 100 Gb/s real-time transmission over a THz wireless fiber extender using a digital-coherent optical modem[C], M4I.2(2020).

    [49] Castro C, Elschner R, Machado J et al. Ethernet transmission over a 100 Gb/s real-time terahertz wireless link[C](2020).

    [50] Song H J, Ajito K, Wakatsuki A et al. Terahertz wireless communication link at 300 GHz[C], 42-45(2010).

    [51] Song H J, Ajito K, Muramoto Y et al. 24 Gbit/s data transmission in 300 GHz band for future terahertz communications[J]. Electronics Letters, 48, 953-954(2012).

    [52] Nagatsuma T, Horiguchi S, Minamikata Y et al. Terahertz wireless communications based on photonics technologies[J]. Optics Express, 21, 23736-23747(2013).

    [53] Stöhr A, Hermelo M F, Steeg M et al. Coherent radio-over-fiber THz communication link for high data-rate 59 Gbit/s 64-QAM-OFDM and real-time HDTV transmission[C], Tu3B.2(2017).

    [54] Zhang J A, Zhu M, Lei M Z et al. Real-time demonstration of 103.125-Gbps fiber-THz-fiber 2×2 MIMO transparent transmission at 360‒430 GHz based on photonics[J]. Optics Letters, 47, 1214-1217(2022).

    [55] Zhang J, Zhu M, Hua B C et al. Real-time demonstration of 100 GbE THz-wireless and fiber seamless integration networks[J]. Journal of Lightwave Technology, 41, 1129-1138(2023).

    [56] Zhu M, Zhang J, Hua B C et al. Ultra-wideband fiber-THz-fiber seamless integration communication system toward 6G: architecture, key techniques, and testbed implementation[J]. Science China Information Sciences, 66, 113301(2023).

    [57] Zhang J, Zhu M, Hua B et al. Real-time Dual-channel 2×2 MIMO fiber-THz-fiber seamless integration system at 385 GHz and 435 GHz[C](2022).

    [58] Yu J J, Li X Y, Zhou W. Tutorial: Broadband fiber-wireless integration for 5G+ communication[J]. APL Photonics, 3, 11110(2018).

    [59] Ma C, Yang Y, Liu C et al. Microwave photonic imaging radar with a sub-centimeter-level resolution[J]. Journal of Lightwave Technology, 38, 4948-4954(2020).

    [60] Nie H J, Zhang F Z, Yang Y et al. Photonics-based integrated communication and radar system[C](2019).

    [61] Huang L, Li R M, Liu S J et al. Centralized fiber-distributed data communication and sensing convergence system based on microwave photonics[J]. Journal of Lightwave Technology, 37, 5406-5416(2019).

    [62] Xue Z J, Li S Y, Xue X X et al. Photonics-assisted joint radar and communication system based on an optoelectronic oscillator[J]. Optics Express, 29, 22442-2245(2021).

    [63] Bai W L, Zou X H, Li P X et al. Photonic millimeter-wave joint radar communication system using spectrum-spreading phase-coding[J]. IEEE Transactions on Microwave Theory and Techniques, 70, 1552-1561(2022).

    [64] Ju Z, Liu J X, Yu J J. W-band radio-over-fiber transmission system with delta-sigma modulation and direct detection[J]. Chinese Optics Letters, 21, 040602(2023).

    [65] Liu J X, Ding J J, Wang C et al. 8192-QAM signal transmission by an IM/DD system at W-band using delta-sigma modulation[J]. IEEE Photonics Technology Letters, 35, 207-210(2023).

    [66] Zhao F, Yang X W, Zhao L et al. Demonstration of 4096QAM THz MIMO wireless delivery employing one-bit delta-sigma modulation[J]. Optics Letters, 47, 6361-6364(2022).

    [67] Zhang L, Chen Z F, Zhang H Q et al. Hybrid fiber-THz fronthaul supporting up to 16384-QAM-OFDM with the delta-sigma modulation[J]. Optics Letters, 47, 4307-4310(2022).

    [68] Shi J T, Yu J J, Laboratories P M et al. 65, 536-QAM OFDM signal transmission over a fiber-THz system at 320 GHz with delta-sigma modulation[J]. Optics Letters, 48, 2098-2101(2023).

    [69] Yu J J, Li X Y, Tang X L et al. High-speed signal transmission at W-band over dielectric-coated metallic hollow fiber[J]. IEEE Transactions on Microwave Theory and Techniques, 63, 1836-1842(2015).

    [70] Yu X B, Miyamoto T, Obata K et al. Direct terahertz communications with wireless and fiber links[C](2019).

    [71] Rappaport T S, Xing Y C, Kanhere O et al. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond[J]. IEEE Access, 7, 78729-78757(2019).

    [72] Fan C, Yang W C, Che W Q et al. A wideband and low-profile discrete dielectric lens using 3-D printing technology[J]. IEEE Transactions on Antennas and Propagation, 66, 5160-5169(2018).

    [73] Konstantinidis K, Feresidis A P, Constantinou C C et al. Low-THz dielectric lens antenna with integrated waveguide feed[J]. IEEE Transactions on Terahertz Science and Technology, 7, 572-581(2017).

    [74] Nemoto S. Transformation of waist parameters of a Gaussian beam by a thick lens[J]. Applied Optics, 29, 809-816(1990).

    [75] Li W P, Yu J J, Ding J J et al. 23.1-Gb/s 135-GHz wireless transmission over 4.6-km and effect of rain attenuation[J]. IEEE Transactions on Microwave Theory and Techniques.

    [76] Yu J J. Photonics-assisted millimeter-wave wireless communication[J]. IEEE Journal of Quantum Electronics, 53, 8000517(2017).

    [77] Yu J J, Chi N, Chen L[M]. Coherent optical communication technology based on digital signal processing(2013).

    [78] Yu J J[M]. Photon-assisted millimeter wave communication technology(2018).

    [79] Yu J J[M]. Broadband terahertz communication technologies(2020).

    [80] Cho J, Winzer P J. Probabilistic constellation shaping for optical fiber communications[J]. Journal of Lightwave Technology, 37, 1590-1607(2019).

    [81] Wang K H, Li X Y, Kong M et al. Probabilistically shaped 16QAM signal transmission in a photonics-aided wireless terahertz-wave system[C](2018).

    [82] Wang Y Y, Zhao F, Wang K H et al. Integrated terahertz high-speed data communication and high-resolution radar sensing system based-on photonics[C](2021).

    [83] Wang Y Y, Li W P, Ding J J et al. Integrated high-resolution radar and long-distance communication based-on photonic in terahertz band[J]. Journal of Lightwave Technology, 40, 2731-2738(2022).

    [84] Ćwikliński M, Brückner P, Leone S et al. First demonstration of G-band broadband GaN power amplifier MMICs operating beyond 200 GHz[C], 1117-1120(2020).

    [85] Nikandish R. GaN integrated circuit power amplifiers: developments and prospects[J]. IEEE Journal of Microwaves, 3, 441-452(2022).

    Tools

    Get Citation

    Copy Citation Text

    Jianjun Yu. Research Progress in Photon-Assisted Terahertz Communication Technology (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0106001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Jun. 30, 2023

    Accepted: Jul. 24, 2023

    Published Online: Jan. 29, 2024

    The Author Email: Yu Jianjun (jianjun@fudan.edu.cn)

    DOI:10.3788/LOP231624

    Topics