Optics and Precision Engineering, Volume. 32, Issue 18, 2783(2024)

Spatial error prediction method for industrial robot based on Support Vector Regression

Guifang QIAO1...2,*, Chunhui GAO1, Xinyi JIANG1, Simin XU1 and Di LIU1 |Show fewer author(s)
Author Affiliations
  • 1School of Automation, Nanjing Institute of Technology, Nanjing267, China
  • 2School of Instrument Science and Engineering, Southeast University, Nanjing10096, China
  • show less
    Figures & Tables(12)
    Schematic diagram of the joint coordinate system for the Staubli TX60 industrial robot
    Industrial robot calibration system
    Structure of SVR model
    Spatial distribution of pose measurement points for Staubli TX60 industrial robot
    Position error compensation for Staubli TX60 robot
    Attitude error compensation for Staubli TX60 robot
    Comparison of four methods for fitting position errors
    Comparison of four methods for fitting attitude errors
    [in Chinese]
    • Table 1. Theoretical MD-H parameters of Staubli TX60 robot

      View table
      View in Article

      Table 1. Theoretical MD-H parameters of Staubli TX60 robot

      iθi/raddi/mmai/mmαi/radβi/rad
      1π00π/2-
      2π/2029000
      3π/2200π/2-
      4π3100π/2-
      5π00π/2-
      607000-
    • Table 2. Neural network parameter settings

      View table
      View in Article

      Table 2. Neural network parameter settings

      Number of layerInputs LayerMiddle LayerOutputs Layer
      BP4620/206
      Elman4620/206
    • Table 3. Comparison experimental results of robot pose error compensation

      View table
      View in Article

      Table 3. Comparison experimental results of robot pose error compensation

      ModelAverage errorMaximum errorStandard deviation of error
      Position/mmAttitude/(°)Position/mmAttitude/(°)Position/mmAttitude/(°)
      Origin0.706 10.174 21.194 70.280 40.276 00.051 0
      BP0.052 60.057 50.136 80.134 00.024 10.024 5
      Elman0.051 70.059 00.140 40.145 30.023 40.026 9
      LM0.196 80.065 90.587 60.201 80.083 20.037 5
      SVR0.055 60.024 60.152 30.107 30.023 90.017 5
    Tools

    Get Citation

    Copy Citation Text

    Guifang QIAO, Chunhui GAO, Xinyi JIANG, Simin XU, Di LIU. Spatial error prediction method for industrial robot based on Support Vector Regression[J]. Optics and Precision Engineering, 2024, 32(18): 2783

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 28, 2024

    Accepted: --

    Published Online: Nov. 18, 2024

    The Author Email: QIAO Guifang (qiaoguifang@126.com)

    DOI:10.37188/OPE.20243218.2783

    Topics