Journal of the Chinese Ceramic Society, Volume. 51, Issue 1, 64(2023)
Effect of Pyrene-Benzothiadiazole Linkage Sites on Photocatalytic Hydrogen Evolution
[1] [1] HISATOMI T, DOMEN K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts[J]. Nat Catal, 2019, 2(5): 387-399.
[2] [2] KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem Soc Rev, 2009, 38(1): 253-278.
[3] [3] ZHANG N, YANG M Q, Liu S, et al. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts[J]. Chem Rev, 2015, 115(18): 10307-10377.
[4] [4] ZHAO C, CHEN Z, SHI R, et al. Recent advances in conjugated polymers for visible-light-driven water splitting[J]. Adv Mater, 2020, 32(28): 1907296.
[5] [5] YANG C, MA B C, ZHANG L, et al. Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis[J]. Angew Chem In Ed, 2016, 55(32): 9202-9206.
[6] [6] WANG Z, YANG X, YANG T, et al. Dibenzothiophene dioxide based conjugated microporous polymers for visible-light-driven hydrogen production[J]. ACS Catal, 2018, 8(9): 8590-8596.
[7] [7] LI L, CAI Z, WU Q, et al. Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production[J]. J Am Chem Soc, 2016, 138(24): 7681-7686.
[8] [8] JIANG D L, CHOI C K, HONDA K, et al. Photosensitized hydrogen evolution from water using conjugated polymers wrapped in dendrimeric electrolytes[J]. J Am Chem Soc, 2004, 126(38): 12084-12089.
[9] [9] XIANG Y, WANG X, RAO L, et al. Conjugated polymers with sequential fluorination for enhanced photocatalytic H2 evolution via proton-coupled electron transfer[J]. ACS energy lett, 2018, 3(10): 2544-2549.
[10] [10] VILELA F, ZHANG K, ANTONIETTI M. Conjugated porous polymers for energy applications[J]. Energy Environ Sci, 2012, 5(7): 7819.
[11] [11] SCHWAB M G, HAMBURGER M, FENG X L, et al. Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks[J]. Chem Commun, 2010, 46(47): 8932-8934.
[12] [12] YAN Y, CHEN J, LI N, et al. Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO2 reduction[J]. ACS Nano, 2018, 12(4): 3523-3532.
[13] [13] KUECKEN S, ACHARJYA A, ZHI L J, et al. Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution[J]. Chem Commun, 2017, 53(43): 5854-5857.
[14] [14] TSENG P, CHANG C, CHAN Y, et al. Design and synthesis of cycloplatinated polymer dots as photocatalysts for visible-light-driven hydrogen evolution[J]. ACS Catal, 2018, 8(9): 7766-7772.
[15] [15] SPRICK R S, WILBRAHAM L, BAI Y, et al. Nitrogen containing linear poly(phenylene) derivatives for photo-catalytic hydrogen evolution from water[J]. Chem Mater, 2018, 30(16): 5733-5742.
[16] [16] SACHS M, SPRICK R S, PEARCE D, et al. Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution[J]. Nat Commun, 2018, 9(1): 4968.
[17] [17] GENG K, HE T, LIU R, et al. Covalent organic frameworks: design, synthesis, and functions[J]. Chem Rev, 2020, 120(16): 8814-8933.
[18] [18] WANG H, WANG H, WANG Z, et al. Covalent organic framework photocatalysts: Structures and applications[J]. Chem Soc Rev, 2020, 49(12): 4135-4165.
[19] [19] SPRICK R S, BAI Y, GUILBERT A, et al. Photocatalytic hydrogen evolution from water using fluorene and dibenzothiophene sulfone- conjugated microporous and linear polymers[J]. Chem Mater, 2019, 31(2): 305-313.
[20] [20] LEE J M, COOPER A I. Advances in conjugated microporous polymers[J]. Chem Rev, 2020, 120(4): 2171-2214.
[21] [21] HUANG W, HE Q, HU Y P, et al. Molecular heterostructures of covalent triazine frameworks for enhanced photocatalytic hydrogen production[J]. Ange Chem In Ed, 2019, 58(26): 8676-8680.
[22] [22] KONG D, HAN X, XIE J, et al. Tunable covalent triazine-based frameworks (CTF-0) for visible-light-driven hydrogen and oxygen generation from water splitting[J]. ACS Catal, 2019, 9(9): 7697-7707.
[23] [23] MEIER C B, CLOWES R, BERARDO E, et al. Structurally diverse covalent triazine-based framework materials for photocatalytic hydrogen evolution from water[J]. Chem Mater, 2019, 31(21): 8830-8838.
[24] [24] HAN C, DONG P, TANG H, et al. Realizing high hydrogen evolution activity under visible light using narrow band gap organic photocatalysts[J]. Chem Sci, 2021, 12(5): 1796-1802.
[25] [25] DAI C H, XU S D, LIU W, et al. Dibenzothiophene-S, S-dioxide- based conjugated polymers: Highly efficient photocatalyts for hydrogen production from water under visible light[J]. SMALL, 2018, 14(34): 1801839.
[26] [26] ZHANG G G, LAN Z A, WANG X C. Conjugated polymers: catalysts for photocatalytic hydrogen evolution[J]. Ange Chem In ed, 2016, 55(51): 15712-15727.
[27] [27] XU Y, MAO N, ZHANG C, et al. Rational design of donor-π-acceptor conjugated microporous polymers for photocatalytic hydrogen production[J]. Appl Catal B: Environ, 2018, 228: 1-9.
[28] [28] XU Y H, JIN S B, XU H, et al. Conjugated microporous polymers: design, synthesis and application[J]. Chem Soc Rev, 2013, 42(20): 8012-8031.
[29] [29] LAN Z A, REN W, CHEN X, et al. Conjugated donor-acceptor polymer photocatalysts with electron-output "tentacles" for efficient hydrogen evolution[J]. Appl Catal B-Environ, 2019, 245: 596-603.
[30] [30] ZHANG X H, WANG X P, XIAO J, ET al. Synthesis of 1, 4-diethynylbenzene-based conjugated polymer photocatalysts and their enhanced visible/near-infrared-light-driven hydrogen production activity[J]. J Catal, 2017, 350: 64-71.
[31] [31] TELITEL S, DUMUR F, FAURY T, et al. New core-pyrene pi structure organophotocatalysts usable as highly efficient photoinitiators[J]. Beilstein J Org Chem, 2013, 9: 877-890.
[32] [32] CHENG C, WANG X C, WANG F. Pyrene-alt-dibenzothiophene-S, S-dioxide copolymers for highly efficient photocatalytic hydrogen production: The role of linking pattern[J]. Appl Surf Sci, 2019, 495: 143537.
[33] [33] CHENG C, WANG X C, LIN Y Y, et al. The effect of molecular structure and fluorination on the properties of pyrene-benzothiadiazole- based conjugated polymers for visible-light-driven hydrogen evolution[J]. Pol Chem, 2018, 9(35): 4468-4475.
[34] [34] SPRICK R S, JIANG J X, BONILLO B, et al. Tunable organic photocatalysts for visible-light-driven hydrogen evolution[J]. J Am Chem Soc, 2015, 137(9): 3265-3270.
[35] [35] VYAS V S, HAASE F, STEGBAUER L, et al. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation[J]. Nat Commun, 2015, 6: 8508.
[36] [36] ZHONG Y J, WANG Z Q, FENG J Y, et al. Improvement in photocatalytic H-2 evolution over g-C3N4 prepared from protonated melamine[J]. Appl Surf Sci, 2014, 295: 253-259.
[37] [37] GE L, ZUO F, LIU J K, et al. Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots[J]. J Phys Chem C, 2012, 116(25): 13708-13714.
[38] [38] MANGRULKAR P A, JOSHI M V, KAMBLE S P, et al. Hydrogen evolution by a low cost photocatalyst: Bauxite residue[J]. Intj Hydrogen Energy, 2010, 35(20): 10859-10866.
[39] [39] IVANOV M V, THAKUR K, BODDEDA A, et al. Nodal arrangement of HOMO controls the turning on/off the electronic coupling in isomeric polypyrene wires[J]. J Phys Chem C, 2017, 121(17): 9202-9208.
[40] [40] JIANG J X, TREWIN A, ADAMS D J, et al. Band gap engineering in fluorescent conjugated microporous polymers[J]. Chem Sci, 2011, 2(9): 1777-1781.
[41] [41] KANG J, TONGAY S, ZHOU J, et al. Band offsets and heterostructures of two-dimensional semiconductors[J]. Appl Phys Lett, 2013, 102(1): 01211.
[42] [42] HU Z C, ZHANG X, YIN Q W, et al. Highly efficient photocatalytic hydrogen evolution from water-soluble conjugated polyelectrolytes[J]. Nano Energy, 2019, 60: 775-783.
[43] [43] HUANG W Y, SHEN Z Q, CHENG J Z, et al. C-H activation derived CPPs for photocatalytic hydrogen production excellently accelerated by a DMF cosolvent[J]. J Mater Chem A, 2019, 7(42): 24222-24230.
Get Citation
Copy Citation Text
HE Huan, GAO Ruiqi, HE Hongjing, WANG Ningxing, BI Weiling, CHEN Shuling, SHEN Rongchen, LI Xin. Effect of Pyrene-Benzothiadiazole Linkage Sites on Photocatalytic Hydrogen Evolution[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 64
Special Issue:
Received: Mar. 7, 2022
Accepted: --
Published Online: Mar. 10, 2023
The Author Email: