Journal of Inorganic Materials, Volume. 36, Issue 3, 325(2021)
[1] GUO Q, ZHOU C, MA Z et al. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges[J]. Advanced Materials, 1901997(2019).
[6] ZHANG L J, LI S, LIU B K et al. Highly efficient CdS/WO3 photocatalysts: Z-Scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light[J]. ACS Catalysis, 4, 3724-3729(2014).
[7] ZENG W, CAI T, LIU Y et al. An artificial organic-inorganic Z- scheme photocatalyst WO3@Cu@PDI supramolecular with excellent visible light absorption and photocatalytic activity[J]. Chemical Engineering Journal, 381, 122691(2020).
[8] LI Y, LIU Z, GUO Z et al. Efficient WO3 photoanode modified by Pt layer and plasmonic Ag for enhanced charge separation and transfer to promote photoelectrochemical performances[J]. ACS Sustainable Chemistry & Engineering, 7, 12582-12590(2019).
[9] SUN K, LU Q, MA C et al. Pt modified ultrafine WO3 nanofibers: a combined first-principles and experimental study[J]. Materials Letters, 236, 267-270(2019).
[10] GONG H, ZHANG Y, CAO Y et al. Pt@Cu2O/WO3 composite photocatalyst for enhanced photocatalytic water oxidation performance[J]. Applied Catalysis B: Environmental, 237, 309-317(2018).
[13] ZHU J, ZHANG M, XIONG J et al. Electrostatically assembled construction of ternary TiO2-Cu@C hybrid with enhanced solar-to- hydrogen evolution employing amorphous carbon dots as electronic mediator[J]. Chemical Engineering Journal, 375, 121902(2019).
[14] ZHU J, CHENG G, XIONG J et al. Recent advances in Cu-based cocatalysts toward solar-to-hydrogen evolution: categories and roles[J]. Solar RRL, 3, 1900256(2019).
[15] MALDONADO MI, LÓPEZ-MARTÍN A, COLÓN G et al. Solar pilot plant scale hydrogen generation by irradiation of Cu/TiO2 composites in presence of sacrificial electron donors[J]. Applied Catalysis B: Environmental, 229, 15-23(2018).
[16] WANG H, WANG Y, XU A et al. Facile synthesis of a novel WO3/Ag2MoO4 particles-on-plate staggered type II heterojunction with improved visible-light photocatalytic activity in removing environmental pollutants[J]. RSC Advances, 9, 34804-34813(2019).
[18] LARA MA, JARAMILLO-PÁEZ C, NAVÍO JA et al. Coupling of WO3 with anatase TiO2 sample with high {001} facet exposition: effect on the photocatalytic properties[J]. Catalysis Today, 328, 142-148(2019).
[19] WEI Y, CHENG G, XIONG J et al. Synergistic impact of cocatalysts and hole scavenger for promoted photocatalytic H2 evolution in mesoporous TiO2-NiS
[20] MAJHI D, DAS K, MISHRA A et al. One pot synthesis of CdS/BiOBr/Bi2O2CO3: a novel ternary double Z-scheme heterostructure photocatalyst for efficient degradation of atrazine[J]. Applied Catalysis B: Environmental, 260, 118222(2020).
[21] CHENG G, WEI Y, XIONG J et al. Same titanium glycolate precursor but different products: successful synthesis of twinned anatase TiO2 nanocrystals with excellent solar photocatalytic hydrogen evolution capability[J]. Inorganic Chemistry Frontiers, 4, 1319-1329(2017).
[22] HU C, ZHANG X, LI X et al. Au photosensitized TiO2 ultrathin nanosheets with {001} exposed facets[J]. Chemistry - A European Journal, 20, 13557-13560(2014).
[23] TIAN J, HAO P, WEI N et al. 3D Bi2MoO6 nanosheet/TiO2 nanobelt heterostructure: enhanced photocatalytic activities and photoelectochemistry performance[J]. ACS Catalysis, 5, 4530-4536(2015).
[25] HU X, ZHAO H, LIANG Y et al. Energy level mediation of (BiO)2CO3
[26] WANG X, LI T, YU R et al. Highly efficient TiO2 single-crystal photocatalyst with spatially separated Ag and F- bi-cocatalysts: orientation transfer of photogenerated charges and their rapid interfacial reaction[J]. Journal of Materials Chemistry A, 4, 8682-8689(2016).
[27] ZHOU J, LI Y, YU L et al. Facile
[30] LIU Y, ZHU G, GAO J et al. Enhanced photocatalytic activity of Bi4Ti3O12 nanosheets by Fe 3+-doping and the addition of Au nanoparticles: photodegradation of phenol and bisphenol A[J]. Applied Catalysis B: Environmental, 200, 72-82(2017).
[31] DIAK M, KLEIN M, KLIMCZUK T et al. Photoactivity of decahedral TiO2 loaded with bimetallic nanoparticles: degradation pathway of phenol-1-13C and hydroxyl radical formation[J]. Applied Catalysis B: Environmental, 200, 56-71(2017).
[32] GIANNAKAS AE, ANTONOPOULOU M, DAIKOPOULOS C et al. Characterization and catalytic performance of B-doped, B-N co-doped and B-N-F tri-doped TiO2 towards simultaneous Cr(VI) reduction and benzoic acid oxidation[J]. Applied Catalysis B: Environmental, 184, 44-54(2016).
Get Citation
Copy Citation Text
Jinyan XIONG, Qiang LUO, Kai ZHAO, Mengmeng ZHANG, Chao HAN, Gang CHENG.
Category: RESEARCH LETTERS
Received: Mar. 6, 2020
Accepted: --
Published Online: Dec. 8, 2021
The Author Email: Gang CHENG (gchenglab@163.com)