Journal of Electronic Science and Technology, Volume. 22, Issue 1, 100243(2024)

Benchmarking YOLOv5 models for improved human detection in search and rescue missions

Namat Bachir and Qurban Ali Memon*
Author Affiliations
  • Electrical Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
  • show less
    References(33)

    [1] [1] R.J. Koester, Lost Person Behavi: A Search Rescue. lottesville, USA: DBS Productions LLC, 2008.

    [2] [2] M.B. Bejiga, A. Zeggada, F. Melgani, Convolutional neural wks f near realtime object detection from UAV imagery in avalanche search rescue operations, in: Proc. Of IEEE Intl. Geoscience Remote Sensing Symposium, Beijing, 2016, pp. 693–696.

    [3] Martinez-Alpiste I., Golcarenarenji G., Wang Q., Alcaraz-Calero J.M.. Search and rescue operation using UAVs: A case study. Expert Syst. Appl., 178, 114937:1-9(2021).

    [4] [4] M. Kampouraki, G.A. Wood, T.R. Brewer, Opptunities limitations of object based image analysis f detecting urban impervious vegetated surfaces using truecolour aerial photography, in: T. Blhke, S. Lang, G.J. Hay (Eds.), ObjectBased Image Analysis: Spatial Concepts f KnowledgeDriven Remote Sensing Applications, Springer, Berlin, 2008, pp. 555–569.

    [5] [5] C.A.B. Baker, S. Ramchurn, W.T.L.Teacy, N.R. Jennings, Planning search rescue missions f UAV teams, in: Proc. of 21nd European Conf. on Artificial Intelligence, Hague, 2016, pp. 1777–1778.

    [6] [6] K. Yun, L. Nguyen, T. Nguyen, et al., Small target detection f search rescue operations using distributed deep learning synthetic data generation, in: Proc. of SPIE 10995, Baltime, 2019, pp. 1099507:1–6.

    [7] [7] S.O. Murphy, C. Sreenan, K.N. Brown, Autonomous unmanned aerial vehicle f search rescue using software defined radio, in: Proc. of IEEE 89th Vehicular Technology Conf., Kuala Lumpur, 2019, pp. 1–6.

    [8] Lygouras E., Santavas N., Taitzoglou A., Tarchanidis K., Mitropoulos A., Gasteratos A.. Unsupervised human detection with an embedded vision system on a fully autonomous UAV for search and rescue operations. Sensors,, 19, 3542:1-20(2019).

    [11] [11] T.Y. Lin, P. Goyal, R. Girshick, K.M. He, P. Dollár, Focal loss f dense object detection, in: Proc. of IEEE Intl. Conf. on Computer Vision, Venice, 2017, pp. 2999–3007.

    [12] [12] Z.W. Cai, N. Voncelos, Cade RCNN: Delving into high quality object detection, in: Proc. of IEEECVF Conf. on Computer Vision Pattern Recognition, Salt Lake City, 2018, pp. 6154–6162.

    [13] [13] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, realtime object detection, in: Proc. of IEEE Conf. on Computer Vision Pattern Recognition, Las Vegas, 2016, pp. 779–788.

    [14] [14] W. Liu, D. Anguelov, D. Erhan, et al., SSD: Single shot MultiBox detect, in: Proc. of 14th European Conf. on Computer Vision, Amsterdam, 2016, pp. 21–37.

    [15] Ali Z., Memon Q.. Time delay tracking for multiuser synchronization in CDMA networks. Journal of Networks,, 8, 1929-1935(2013).

    [16] [16] M. Tan, R. Pang, Q.V. Le, EfficientDet: Scalable efficient object detection, in: Proc. of IEEECVF Conf. on Computer Vision Pattern Recognition, Seattle, 2020, pp. 10778–10787.

    [17] [17] M. Tan, Q.V. Le, Efficient: Rethinking model scaling f convolutional neural wks, in: Proc. of the 36th Intl. Conf. Machine Learning, Long Beach, 2019.

    [18] [18] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. FeiFei, Image: A largescale hierarchical image database, in: Proc. of IEEE Conf. on Computer Vision Pattern Recognition, Miami, 2009, pp. 248–255.

    [19] [19] T.Y. Lin, M. Maire, S. Belongie, et al., Microsoft COCO: Common objects in context, in: Proc. of 13th European Conf. on Computer Vision, Zurich, 2014, pp. 740–755.

    [20] Rostami M., Kolouri S., Eaton E., Kim K.. Deep transfer learning for few-shot SAR image classification. Remote Sensing, 11, 1374:1-19(2019).

    [21] Zhang X.-D., Zhu K., Chen G.-Z. et al. Geospatial object detection on high resolution remote sensing imagery based on double multi-scale feature pyramid network. Remote Sensing,, 11, 755:1-27(2019).

    [22] [22] S. Sambolek, M. IvasicKos, Automatic person detection in search rescue operations using deep CNN detects, IEEE Access 9 (2021) 37905−37922.

    [23] Vasić M.K., Papić V.. Improving the model for person detection in aerial image sequences using the displacement vector: A search and rescue scenario. Drones, 6, 19:1-19(2022).

    [24] [24] M.G. Drer, A.E. Tolmacheva, Comparison of the YOLOv3 mask RCNN architectures’ efficiency in the smart refrigerat’s computer vision, Journal of Physics, Conference Series, 1679 (4) (Nov. 2020) 042022:1–12.

    [25] [25] J.A. Kim, J.Y. Sung, S.H. Park, Comparison of fasterRCNN, YOLO, SSD f realtime vehicle type recognition, in: Proc. IEEE Intl. Conf. on Consumer Electronics Asia, Seoul, 2020, pp. 1–4.

    [26] Mao Y.-T.. A pedestrian detection algorithm for low light and dense crowd based on improved YOLO algorithm. MATEC Web of Conf., 355, 03020:1-16(2022).

    [27] [27] C. Wang, W. He, Y. Nie, et al. GoldYOLO: Efficient object detect via gatherdistribute mechanism, in: Proc. of 37th Conf. on Neural Infmation Processing Systems, New leans, 2023.

    [28] [28] Learn OpenCV, YOLOv5: Expert guide to custom object detection training [Online]. Available, https:learnopencv.comcustomobjectdetectiontrainingusingyolov5, May 2023.

    [29] [29] Paperspace by DigitalOcean, How to train YOLO v5 on a custom dataset [Online]. Available, https:blog.paperspace.comtrainyolov5customdata , May 2023.

    [30] [30] F. Bashir, F. Pikli, Perfmance evaluation of object detection tracking systems, in: Proc. of 9th IEEE Intl. Wkshop on PETS, New Yk, 2006, pp. 7–14.

    [31] [31] N. Bachir, Q. Memon, Investigating YOLOv5 f search rescue operations involving UAVs: Investigating YOLO5, in: Proc. of 5th Intl. Conf. on Control Computer Vision, Xiamen, 2022, pp. 200–204.

    [32] [32] S. Caputo, G. Castellano, F. Greco, C. Mencar, N. Petti, G. Vessio, Human detection in drone images using YOLO f searchrescue operations, in: Proc. of 20th Intl. Conf. of AIxIA 2021−Advances in Artificial Intelligence, Milan, 2022, pp. 326–337.

    Tools

    Get Citation

    Copy Citation Text

    Namat Bachir, Qurban Ali Memon. Benchmarking YOLOv5 models for improved human detection in search and rescue missions[J]. Journal of Electronic Science and Technology, 2024, 22(1): 100243

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 19, 2023

    Accepted: Feb. 4, 2024

    Published Online: Jul. 5, 2024

    The Author Email: Memon Qurban Ali (qurban.memon@uaeu.ac.ae)

    DOI:10.1016/j.jnlest.2024.100243

    Topics