Optics and Precision Engineering, Volume. 23, Issue 8, 2339(2015)

Efficient target tracking by TLD based on binary normed gradients

CHENG Shuai1,*... CAO Yong-gang1,2, SUN Jun-xi3, LIU Guang-wen1 and HAN Guang-liang2 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(27)

    [2] [2] WU Y, LIM J, YANG M H. Online object tracking: A benchmark [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, OR, Portland: IEEE, 2013: 2411-2418.

    [3] [3] ROSS D A, LIM J, LIN R S, et al.. Incremental learning for robust visual tracking [J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.

    [5] [5] LI H, SHEN C, SHI Q. Real-time visual tracking using compressive sensing[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI: IEEE, 2011: 1305-1312.

    [6] [6] SEVILLA-LARA L, LEARNED-MILLER E. Distribution fields for tracking[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI: IEEE, 2012: 1910-1917.

    [7] [7] GRABNER H, GRABNER M, BISCHOF H. Real-time tracking via on-line boosting[C]. Proceedings of British Machine Vision Conference, Edinburgh, Scotland: BMVA, 2006, 47-56.

    [8] [8] GRABNER H, LEISTNER C, BISCHOF H. Semi-supervised on-line boosting for robust tracking[C]. Proceedings of European Conference on Computer Vision, Berlin, Germany: Springer, 2008: 234-247.

    [9] [9] KALAL Z, MATAS J, MIKOLAJCZYK K. P-N learning: Bootstrapping binary classifiers by structural constraints[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New York ,USA: IEEE, 2010: 49-56.

    [10] [10] STALDER S, GRABNER H, VAN G L. Beyond semi-supervised tracking: tracking should be as simple as detection, but not simpler than recognition [C]. Proceedings of International Conference on Computer Vision Workshop, Kyoto, Japan, 2009,1409-1416.

    [12] [12] BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online multiple instance learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.

    [13] [13] ZHANGA K, SONG H. Real-time visual tracking via online weighted multiple instance learning [J]. Pattern Recognition, 2013, 46(1): 397-411.

    [14] [14] KALAL Z, MIKOLAJCZYK K,MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422.

    [15] [15] ZHOU X, QIAN Q M,YE Y Q, et al.. Improved TLD visual target tracking algorithm [J]. Journal of Image and Graphics, 2013, 18(9): 1115-1123. (in Chinese)

    [16] [16] JIANG W J, GUO G D. Efficient cascade classifier for object tracking in complex conditions[J]. Journal of Image and Graphics, 2014,19(2): 253-265. (in Chinese)

    [17] [17] VOJIR T, MATAS J. Robustifying the flock of trackers[C]. Proceedings of Computer Vision Winter Workshop, Graz, Austria,2011: 91-97.

    [18] [18] ENDRES I, HOIEM D. Category independent object proposals[C]. Proceedings of European Conference on Computer Vision, Berlin, Germany, 2010: 575-588.

    [19] [19] ALEXE B, DESELAERS T, FERRARI V. Measuring the objectness of image windows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012: 34(11): 2189-2202.

    [20] [20] UIJLINGS J, VAN D S, GEVERS T, et al.. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171.

    [21] [21] CHENG M M, ZHANG Z M, LIN W Y. BING: binarized normed gradients for objectness estimation at 300fps [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Philip, Torr: IEEE, 2014.

    [22] [22] BOTTERILL T, MILLS S, GREEN R D. New conditional sampling strategies for speeded-up RANSAC[J]. British Machine Vision Conference, 2009: 1-11.

    [23] [23] KALAL Z, MATAS J, MIKOLAJCZYK K. Online learning of robust object detectors during unstable tracking [C]. Proceedings of IEEE International Conference on Computer Vision Workshop, Kyoto, Japan: IEEE, 2009: 1417-1424.

    [24] [24] ZHANG Z, WARRELL J, TORR P H . Proposal generation for object detection using cascaded ranking SVMS[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI : IEEE, 2011: 1497-1504.

    [25] [25] NEUBECK A, VAN G L. Efficient non-maximum suppression[C]. Proceedings of International Conference on Pattern Recognition, Hong Kong, China, 2006: 850-855.

    [26] [26] YU Q, DINH T B, MEDIONI G. Online tracking and reacquisition using co-trained generative and discriminative trackers[C]. Proceedings of European Conference on Computer Vision, Marseille, France, 2008: 678-691.

    [27] [27] STALDER S, GRABNER H, GOOL L V. Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition[C]. Proceedings of International Conference on Computer Vision Workshops, Kyoto, Japan: IEEE, 2009: 1409-1416.

    CLP Journals

    [1] LU Mu, GAO Yang, ZHU Ming. Moving target detection under moving base[J]. Optics and Precision Engineering, 2016, 24(7): 1782

    [2] ZHANG Hong-ying, ZHENG Xuan. Spatio-temporal context tracking algorithm based on dual-object model[J]. Optics and Precision Engineering, 2016, 24(5): 1215

    Tools

    Get Citation

    Copy Citation Text

    CHENG Shuai, CAO Yong-gang, SUN Jun-xi, LIU Guang-wen, HAN Guang-liang. Efficient target tracking by TLD based on binary normed gradients[J]. Optics and Precision Engineering, 2015, 23(8): 2339

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 7, 2015

    Accepted: --

    Published Online: Oct. 22, 2015

    The Author Email: Shuai CHENG (chengshuai_pd@126.com)

    DOI:10.3788/ope.20152308.2339

    Topics