Nano-Micro Letters, Volume. 16, Issue 1, 081(2024)

Chalcogenide Ovonic Threshold Switching Selector

Zihao Zhao1...2, Sergiu Clima3, Daniele Garbin3, Robin Degraeve3, Geoffrey Pourtois3, Zhitang Song1 and Min Zhu1,* |Show fewer author(s)
Author Affiliations
  • 1National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
  • 2University of Chinese Academy of Sciences, Beijing, 100029, People’s Republic of China
  • 3IMEC, Kapedreef 75, Leuven, Belgium
  • show less
    References(196)

    [1] [1] D. Reinsel, J. Gantz, J. Rydning, Data Age 2025: The Digitization of the World: From Edge to Core (International Data Corporation (IDC), 2018). https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf.

    [6] [6] G. Servalli, A 45nm generation Phase Change Memory technology. in 2009 IEEE International Electron Devices Meeting (IEDM). Baltimore, MD, USA. 1–4 (2009).

    [7] [7] G.W. Burr, K. Virwani, R.S. Shenoy, A. Padilla, M. BrightSky et al., Large-scale (512kbit) integration of multilayer-ready access-devices based on mixed-ionic-electronic-conduction (MIEC) at 100% yield. in 2012 Symposium on VLSI Technology (VLSIT). Honolulu, HI, USA. 41–42 (2012).

    [11] [11] D. Kau, S. Tang, I.V. Karpov, R. Dodge, B. Klehn et al., A stackable cross point phase change memory. in 2009 IEEE International Electron Devices Meeting (IEDM). Baltimore, MD, USA. 1–4 (2009).

    [12] [12] A. Fazio, Advanced technology and systems of cross point memory. in 2020 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 24.1.1–24.1.4 (2020).

    [13] [13] W.R. Northover, A.D. Pearson, US Patent 3117013 (1964).

    [14] [14] R.H. Dennard, US Patent 3387286 (1967).

    [15] [15] S.R. Ovshinsky, US Patent 3271591 (1966).

    [23] [23] S. Lai, T. Lowrey, OUM—A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. in International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224). Washington, DC, USA. 36.5.1–36.5.4 (2001).

    [24] [24] M. Gill, T. Lowrey, J. Park, Ovonic unified memory—a high-performance nonvolatile memory technology for stand-alone memory and embedded applications. in 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315). San Francisco, CA, USA. 202–459 (2002).

    [25] [25] F. Bedeschi, C. Resta, O. Khouri, B. E., L. Costa et al., An 8Mb demonstrator for high-density 1.8V Phase-Change Memories. in 2004 Symposium on VLSI Circuits. Digest of Technical Papers. Honolulu, HI, USA. 442–445 (2004).

    [26] [26] M.J. Kang, T.J. Park, Y.W. Kwon, D.H. Ahn, Y.S. Kang et al., PRAM cell technology and characterization in 20 nm node size. in 2011 International Electron Devices Meeting. Washington, DC, USA. 3.1.1–3.1.4 (2011).

    [27] [27] J.H. Oh, J.H. Park, Y.S. Lim, H.S. Lim, Y.T. Oh et al., Full integration of highly manufacturable 512 Mb PRAM based on 90 nm technology. in 2006 International Electron Devices Meeting. San Francisco, CA, USA. 1–4 (2006).

    [29] [29] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang et al., A 20nm 1.8 V 8 Gb PRAM with 40MB/s program bandwidth. in 2012 IEEE International Solid-State Circuits Conference. San Francisco, CA, USA. 46–48 (2012).

    [31] [31] A. Verdy, G. Navarro, V. Sousa, P. Noe, M. Bernard et al., Improved electrical performance thanks to Sb and N doping in Se-rich GeSe-based OTS selector devices. in 2017 IEEE International Memory Workshop (IMW). Monterey, CA, USA. 1–4 (2017).

    [32] [32] N.S. Avasarala, B. Govoreanu, K. Opsomer, W. Devulder, S. Clima et al., Doped GeSe materials for selector applications. in 2017 47th European Solid-State Device Research Conference (ESSDERC). Leuven, Belgium. 168–171 (2017).

    [35] [35] C.H. Wu, C.M. Lee, Y.S. Chen, H.Y. Lee, E. Ambrosi et al., Low-voltage (~ 1.3V), arsenic free threshold type selector with ultra high endurance (> 1011) for high density 1S1R memory array. in 2021 Symposium on VLSI Technology. Kyoto, Japan. 1–2 (2021). https://ieeexplore.ieee.org/document/9508722

    [38] [38] N.S. Avasarala, G.L. Donadio, T. Witters, K. Opsomer, B. Govoreanu et al., Half-threshold bias Ioff reduction down to nA range of thermally and electrically stable high-performance integrated OTS selector, obtained by Se enrichment and N-doping of thin GeSe layers. in 2018 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. 209–210 (2018).

    [42] [42] A. Verdy, G. Navarro, M. Bernard, S. Chevalliez, N. Castellani et al., Carbon electrode for Ge-Se-Sb based OTS selector for ultra low leakage current and outstanding endurance. in 2018 IEEE International Reliability Physics Symposium (IRPS). 6D.4–1–6D.4–6 (2018).

    [50] [50] H.Y. Cheng, W.C. Chien, I.T. Kuo, C.W. Yeh, L. Gignac et al., Ultra-high endurance and low IOFF selector based on AsSeGe chalcogenides for wide memory window 3D stackable crosspoint memory. in 2018 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 37.3.1–37.3.4 (2018).

    [51] [51] H.Y. Cheng, W.C. Chien, I.T. Kuo, E.K. Lai, Y. Zhu et al., An ultra high endurance and thermally stable selector based on TeAsGeSiSe chalcogenides compatible with BEOL IC Integration for cross-point PCM. in 2017 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 2.2.1–2.2.4 (2017).

    [52] [52] H.Y. Cheng, W.C. Chien, I.T. Kuo, C.H. Yang, Y.C. Chou et al., Optimizing AsSeGe chalcogenides by dopants for extremely low IOFF, high endurance and low Vth drift 3D crosspoint memory. in 2021 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 28.6.1–28.6.4 (2021).

    [54] [54] B. Govoreanu, G.L. Donadio, K. Opsomer, W. Devulder, V.V. Afanas’ev et al., Thermally stable integrated Se-based OTS selectors with > 20 MA/cm2 current drive, > 3.103 half-bias nonlinearity, tunable threshold voltage and excellent endurance. in 2017 Symposium on VLSI Technology. Kyoto, Japan. T92–T93 (2017).

    [63] [63] S. Lee, J. Lee, S. Kim, D. Lee, D. Lee et al., Mg-Te OTS selector with low ioff (<100pA), Fast Switching Speed (τd = 7 ns), and high thermal stability (400 ℃/30 min) for X-point memory applications. in 2021 Symposium on VLSI Technology. Kyoto, Japan. 1–2 (2021). https://ieeexplore.ieee.org/document/9508648

    [70] [70] E. Ambrosi, C.H. Wu, H.Y. Lee, P.C. Chang, C.F. Hsu et al., Low variability high endurance and low voltage arsenic-free selectors based on GeCTe. in 2021 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 28.5.1–28.5.4 (2021).

    [71] [71] E. Ambrosi, C.H. Wu, H.Y. Lee, C.F. Hsu, C.M. Lee et al., Engineering defects in pristine amorphous chalcogenides for forming-free low voltage selectors. in 2022 International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 18.7.1–18.7.4 (2022).

    [72] [72] D. Garbin, W. Devulder, R. Degraeve, G.L. Donadio, S. Clima et al., Composition optimization and device understanding of Si-Ge-As-Te ovonic threshold switch selector with excellent endurance. in 2019 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 35.1.1–35.1.4 (2019).

    [73] [73] M.-J. Lee, D. Lee, H. Kim, H.-S. Choi, J.-B. Park et al., Highly-scalable threshold switching select device based on chaclogenide glasses for 3D nanoscaled memory arrays. in 2012 International Electron Devices Meeting. San Francisco, CA, USA. 2.6.1–2.6.3 (2012).

    [74] [74] O. Kazuhiro and H. Kanagawa, US Patent 20160336378A (2015).

    [75] [75] Y. Koo, K. Baek, H. Hwang, Te-based amorphous binary OTS device with excellent selector characteristics for x-point memory applications. in 2016 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. 1–2 (2016).

    [76] [76] J. Yoo, Y. Koo, S.A. Chekol, J. Park, J. Song et al., Te-based binary OTS selectors with excellent selectivity (> 105), endurance (> 108) and thermal stability (> 450 ℃). in 2018 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. 207–208 (2018).

    [98] [98] D. Matsubayashi, S. Clima, T. Ravsher, D. Garbin, R. Delhougne et al., OTS physics-based screening for environment-friendly selector materials. in 2022 International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 8.6.1–8.6.4 (2022).

    [126] [126] J. Luckas, Electronic transport in amorphous phase-change materials (Doctoral dissertation, Paris 11, 2012).

    [127] [127] R. Degraeve, T. Ravsher, S. Kabuyanagi, A. Fantini, S. Clima et al., Modeling and spectroscopy of ovonic threshold switching defects. in 2021 IEEE International Reliability Physics Symposium (IRPS). Monterey, CA, USA. 1–5 (2021).

    [131] [131] S. Clima, B. Govoreanu, K. Opsomer, A. Velea, N.S. Avasarala et al., Atomistic investigation of the electronic structure, thermal properties and conduction defects in Ge-rich GexSe1−x materials for selector applications. in 2017 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 4.1.1–4.1.4 (2017).

    [145] [145] T. Ravsher, R. Degraeve, D. Garbin, A. Fantini, S. Clima et al., Polarity-dependent threshold voltage shift in ovonic threshold switches: challenges and opportunities. in 2021 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA. 28.4.1–28.4.4 (2021).

    [147] [147] Jeongdong Choe, Memory Process, Design and Architecture: Today and Tomorrow (TechInsights, 2017).

    [148] [148] J. H. Yoon, R. Godse, G. Tressler, H. Hunter, 3D-NAND Scaling & 3D-SCM-Implications to Enterprise Storage. Flash Memory Summit, 2017.

    [151] [151] S. Hong, H. Choi, J. Park, Y. Bae, K. Kim et al., Extremely high performance, high density 20nm self-selecting cross-point memory for Compute Express Link. in 2022 International Electron Devices Meeting (IEDM). San Francisco, CA, USA. IEEE, 18.6.1–18.6.4 (2022).

    [152] [152] C.W. Yeh, W.C. Chien, R.L. Bruce, H.Y. Cheng, I.T. Kuo et al., High endurance self-heating OTS-PCM pillar cell for 3D stackable memory. in 2018 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. 205–206 (2018).

    [154] [154] B. Govoreanu, D. Crotti, S. Subhechha, L. Zhang, Y.Y. Chen et al., A-VMCO: a novel forming-free, self-rectifying, analog memory cell with low-current operation, nonfilamentary switching and excellent variability. in 2015 Symposium on VLSI Technology (VLSI Technology). Kyoto, Japan. T132–T133, (2015).

    [158] [158] Y.-C. Chen, C.F. Chen, C.T. Chen, J.Y. Yu, S. Wu et al., An access-transistor-free (0T/1R) non-volatile resistance random access memory (RRAM) using a novel threshold switching, self-rectifying chalcogenide device. in IEEE International Electron Devices Meeting. Washington, DC, USA. 37.4.1–37.4.4 (2003).

    [161] [161] S. Kabuyanagi, D. Garbin, A. Fantini, S. Clima, R. Degraeve et al., Understanding of tunable selector performance in Si-Ge-As-Se OTS devices by extended percolation cluster model considering operation scheme and material design. in 2020 IEEE Symposium on VLSI Technology. Honolulu, HI, USA. 1–2 (2020).

    [162] [162] T. Ravsher, D. Garbin, A. Fantini, R. Degraeve, S. Clima et al., Enhanced performance and low-power capability of SiGeAsSe-GeSbTe 1S1R phase-change memory operated in bipolar mode. in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). Honolulu, HI, USA. 312–313 (2022).

    [173] [173] S.B. Eryilmaz, D. Kuzum, S. Yu, H.-S P. Wong, Device and system level design considerations for analog-non-volatile-memory based neuromorphic architectures. in 2015 IEEE International Electron Devices Meeting (IEDM). Washington, DC, USA. 4.1.1–4.1.4 (2015).

    [179] [179] B. Rueckauer, S.-C. Liu, Conversion of analog to spiking neural networks using sparse temporal coding. in 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Florence, Italy. 1–5 (2018).

    [193] [193] M. Le Gallo, T. Tuma, F. Zipoli, A. Sebastian, E. Eleftheriou, Inherent stochasticity in phase-change memory devices. in 2016 46th European Solid-State Device Research Conference (ESSDERC). Lausanne, Switzerland. 373–376 (2016).

    [196] [196] Z. Chai, P. Freitas, W. Zhang, J.F. Zhang, J. Marsland, True random number generator based on switching probability of volatile GeXSe1-X ovonic threshold switching selectors. in 2021 IEEE 14th International Conference on ASIC (ASICON). Kunming, China. 1–4 (2021).

    Tools

    Get Citation

    Copy Citation Text

    Zihao Zhao, Sergiu Clima, Daniele Garbin, Robin Degraeve, Geoffrey Pourtois, Zhitang Song, Min Zhu. Chalcogenide Ovonic Threshold Switching Selector[J]. Nano-Micro Letters, 2024, 16(1): 081

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 30, 2023

    Accepted: Nov. 14, 2023

    Published Online: Jan. 23, 2025

    The Author Email: Zhu Min (minzhu@mail.sim.ac.cn)

    DOI:10.1007/s40820-023-01289-x

    Topics