Acta Optica Sinica, Volume. 42, Issue 17, 1701003(2022)

Research Progress on Underwater Ghost Imaging

Mochou Yang, Yi Wu, and Guoying Feng*
Author Affiliations
  • Institute of Laser & Micro/Nano Engineering, College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, Sichuan, China
  • show less
    References(75)

    [1] Brown R H, Twiss R Q. Correlation between photons in two coherent beams of light[J]. Nature, 177, 27-29(1956).

    [2] Brown R H, Twiss R Q. A test of a new type of stellar interferometer on Sirius[J]. Nature, 178, 1046-1048(1956).

    [3] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995).

    [4] Bennink R S, Bentley S J, Boyd R W. Two-Photon coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).

    [5] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [6] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).

    [7] Lü M, Wang W, Wang H et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 7, 17865(2017).

    [8] Lü P, Zhou R K, He J H et al. Research on underwater single-pixel imaging system[J]. Journal of Optoelectronics·Laser, 22, 1425-1430(2011).

    [9] Le M N, Wang G, Zheng H B et al. Underwater computational ghost imaging[J]. Optics Express, 25, 22859-22868(2017).

    [10] Gao Y, Fu X Q, Bai Y F. Ghost imaging in transparent liquid[J]. Journal of Optics, 46, 410-414(2017).

    [11] Yin M Q, Wang L, Zhao S M. Experimental demonstration of influence of underwater turbulence on ghost imaging[J]. Chinese Physics B, 28, 190-195(2019).

    [12] Li Y Z, Deng C J, Gong W L et al. Polarization difference ghost imaging in turbid medium[J]. Acta Optica Sinica, 41, 1511004(2021).

    [13] Zhang M H, Wei Q, Shen X et al. Lensless Fourier-transform ghost imaging with classical incoherent light[J]. Physical Review A, 75, 441-445(2007).

    [14] Chan K W C, O'Sullivan M N, Boyd R W. Optimization of thermal ghost imaging: high-order correlations vs. background subtraction[J]. Optics Express, 18, 5562-5573(2010).

    [15] Chen L Y, Wang C, Xiao X Y et al. Denoising in SVD-based ghost imaging[J]. Optics Express, 30, 6248-6257(2022).

    [16] Vallés A, He J H, Ohno S et al. Broadband high-resolution terahertz single-pixel imaging[J]. Optics Express, 28, 28868-28881(2020).

    [17] Ma Y, Grant J, Saha S et al. Terahertz single pixel imaging based on a Nipkow disk[J]. Optics Letters, 37, 1484-1486(2012).

    [18] Kingston A M, Myers G R, Pelliccia D et al. Neutron ghost imaging[J]. Physical Review A, 101, 053844(2020).

    [19] Schori A, Shwartz S. X-ray ghost imaging with a laboratory source[J]. Optics Express, 25, 14822-14828(2017).

    [20] Studer V, Bobin J, Chahid M et al. Compressive fluorescence microscopy for biological and hyperspectral imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, E1679-E1687(2012).

    [21] Yu W K, Li M F, Yao X R et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation[J]. Optics Express, 22, 7133-7144(2014).

    [22] Sun M J, Edgar M P, Gibson G M et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 12010(2016).

    [23] Wang L, Zhao S M. Full color single pixel imaging by using multiple input single output technology[J]. Optics Express, 29, 24486-24499(2021).

    [24] Liu J F, Wang L, Zhao S M. Spread spectrum ghost imaging[J]. Optics Express, 29, 41485-41495(2021).

    [25] Liu B L, Wang F, Chen C H et al. Self-evolving ghost imaging[J]. Optica, 8, 1340-1349(2021).

    [26] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 13, 13-20(2019).

    [27] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 79, 053840(2009).

    [28] Shapiro J H, Erkmen B I. Ghost imaging: from quantum to classical to computational[C], 1110, 417-422(2009).

    [29] Zhang H, Duan D Y. Turbulence-immune computational ghost imaging based on a multi-scale generative adversarial network[J]. Optics Express, 29, 43929-43937(2021).

    [30] Shi W X, Hu C Y, Yang S G et al. Optical random speckle encoding based on hybrid wavelength and phase modulation[J]. Optics Letters, 46, 3745-3748(2021).

    [31] Olivieri L, Gongora J S T, Peters L et al. Hyperspectral terahertz microscopy via nonlinear ghost imaging[J]. Optica, 7, 186-191(2020).

    [32] Xu Z H, Chen W, Penuelas J et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 26, 2427-2434(2018).

    [33] Yu H, Lu R H, Han S S et al. Fourier-transform ghost imaging with hard X rays[J]. Physical Review Letters, 117, 113901(2016).

    [34] Ferri F, Magatti D, Lugiato L A et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).

    [35] Sun B Q, Welsh S S, Edgar M P et al. Normalized ghost imaging[J]. Optics Express, 20, 16892-16901(2012).

    [36] Li C, Gao C, Shao J Q et al. Hadamard ghost imaging based on compressed sensing reconstruction algorithm[J]. Laser & Optoelectronics Progress, 58, 1011032(2021).

    [37] Yang D Y, Chang C, Wu G H et al. Compressive ghost imaging of the moving object using the low-order moments[J]. Applied Sciences, 10, 7941(2020).

    [38] Wang L, Zhao S M. Compressed ghost imaging based on differential speckle patterns[J]. Chinese Physics B, 29, 341-347(2020).

    [39] Zhang W W, Yu D Q, Han Y C et al. Depth estimation of multi-depth objects based on computational ghost imaging system[J]. Optics and Lasers in Engineering, 148, 106769(2022).

    [40] Bian Z X, Zhang L H, Ye H L et al. Multiple-image encryption based on Toeplitz matrix ghost imaging and elliptic curve cryptography[J]. Laser Physics Letters, 18, 055206(2021).

    [41] Zheng P X, Tan Q L, Liu H C. Inverse computational ghost imaging for image encryption[J]. Optics Express, 29, 21290-21299(2021).

    [42] Zhao M, Zhang X D, Zhang R F. Single-arm ghost imaging via conditional generative adversarial network[J]. Laser Physics Letters, 18, 075203(2021).

    [43] Yu Z, Liu Y, Li J X et al. Color computational ghost imaging by deep learning based on simulation data training[J]. Applied Optics, 61, 1022-1029(2022).

    [44] Wang F, Wang C L, Chen M L et al. Far-field super-resolution ghost imaging with a deep neural network constraint[J]. Light: Science & Applications, 11, 1-11(2022).

    [45] Zhang Z J, Wang C F, Gong W L et al. Ghost imaging of the blurred object based on the deep-learning[J]. Applied Optics, 60, 3732-3739(2021).

    [46] Zhao Y G, Dong B, Liu M et al. Deep learning based computational ghost imaging alleviating the effects of atmospheric turbulence[J]. Acta Optica Sinica, 41, 1111001(2021).

    [47] Wu H, Wang R Z, Zhao G P et al. Deep-learning denoising computational ghost imaging[J]. Optics and Lasers in Engineering, 134, 106183(2020).

    [48] Wu H, Wang R Z, Zhao G P et al. Sub-Nyquist computational ghost imaging with deep learning[J]. Optics Express, 28, 3846-3853(2020).

    [49] Bian T, Yi Y X, Hu J L et al. A residual-based deep learning approach for ghost imaging[J]. Scientific Reports, 10, 12149(2020).

    [50] Wang F, Wang H, Wang H C et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019).

    [51] Bina M, Magatti D, Molteni M et al. Backscattering differential ghost imaging in turbid media[J]. Physical Review Letters, 110, 083901(2013).

    [52] Xiang Q, Yang K C, Yu L et al. Reflective underwater ghost imaging[J]. Acta Optica Sinica, 35, 0711002(2015).

    [53] Wang M Q, Bai Y F, Zou X P F et al. Effect of uneven temperature distribution on underwater computational ghost imaging[J]. Laser Physics, 32, 065205(2022).

    [54] Hardy N D, Shapiro J H. Reflective ghost imaging through turbulence[J]. Physical Review A, 84, 063824(2011).

    [55] Luo C L, Li Z L, Xu J H et al. Computational ghost imaging and ghost diffraction in turbulent ocean[J]. Laser Physics Letters, 15, 125205(2018).

    [56] Korotkova O, Farwell N. Effect of oceanic turbulence on polarization of stochastic beams[J]. Optics Communications, 284, 1740-1746(2011).

    [57] Luo C L, Wan W X, Chen S Y et al. High-quality underwater computational ghost imaging with shaped Lorentz sources[J]. Laser Physics Letters, 17, 105209(2020).

    [58] Zhang Q W, Li W D, Liu K et al. Effect of oceanic turbulence on the visibility of underwater ghost imaging[J]. Journal of the Optical Society of America A, 36, 397-402(2019).

    [59] Zhang Y, Li W D, Wu H Z et al. High-visibility underwater ghost imaging in low illumination[J]. Optics Communications, 441, 45-48(2019).

    [60] Zhang Q W, Cao L Z, Liu X et al. Imaging analysis of reflective ghost imaging in oceanic turbulence[J]. Acta Photonica Sinica, 49, 0901002(2020).

    [61] Chen Q, Mathai A, Xu X P et al. A study into the effects of factors influencing an underwater, single-pixel imaging system′s performance[J]. Photonics, 6, 123(2019).

    [62] Yang X, Liu Y, Mou X Y et al. Imaging in turbid water based on a Hadamard single-pixel imaging system[J]. Optics Express, 29, 12010-12023(2021).

    [63] Chen Q, Mathai A, Xu X P et al. A study into the effects of factors influencing an underwater, single-pixel imaging system's performance[J]. Photonics, 6, 123(2019).

    [64] Zhao M, Wang Y, Tian Z M et al. Method of push-broom underwater ghost imaging computation[J]. Laser & Optoelectronics Progress, 56, 161101(2019).

    [65] Zhao M J. Research on underwater polarization-based ghost imaging[D], 42-43(2019).

    [66] Wu H D, Zhao M, Li F Q et al. Underwater polarization-based single pixel imaging[J]. Journal of the Society for Information Display, 28, 157-163(2020).

    [67] Yang X, Jiang P F, Wu L et al. Underwater Fourier single pixel imaging based on water degradation function compensation method[J]. Infrared and Laser Engineering, 49, 20200281(2020).

    [68] Wang T, Chen M Y, Wu H et al. Underwater compressive computational ghost imaging with wavelet enhancement[J]. Applied Optics, 60, 6950-6957(2021).

    [69] Li M D, Mathai A, Lau S L H et al. Underwater object detection and reconstruction based on active single-pixel imaging and super-resolution convolutional neural network[J]. Sensors, 21, 313(2021).

    [70] Yang X, Yu Z Y, Xu L et al. Underwater ghost imaging based on generative adversarial networks with high imaging quality[J]. Optics Express, 29, 28388-28405(2021).

    [71] Hondori E J, Kato M, Asakawa E et al. Receiver ghost imaging using vertical cable seismic data for methane hydrate exploration[C], 4322-4326(2019).

    [72] Wu Y B, Yang Z H, Tang Z L. Experimental study on anti-disturbance ability of underwater ghost imaging[J]. Laser & Optoelectronics Progress, 58, 1011031(2021).

    [73] Lanzagorta M. Quantum imaging for underwater arctic navigation[J]. Proceedings of SPIE, 10188, 101880G(2017).

    [74] Lanzagorta M. Quantum imaging for underwater arctic navigation[P].

    [75] Lanzagorta M, Uhlmann J. Quantum imaging in the maritime environment[C](2017).

    Tools

    Get Citation

    Copy Citation Text

    Mochou Yang, Yi Wu, Guoying Feng. Research Progress on Underwater Ghost Imaging[J]. Acta Optica Sinica, 2022, 42(17): 1701003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Jun. 1, 2022

    Accepted: Jun. 30, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Feng Guoying (guoing_feng@scu.edu.cn)

    DOI:10.3788/AOS202242.1701003

    Topics