Acta Optica Sinica, Volume. 41, Issue 8, 0823014(2021)

Research Progress of Microresonator-Based Optical Frequency Combs

Xinliang Zhang1、* and Yanjing Zhao1,2
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information,Huazhong University of Science and Technology, Wuhan, Hubei 430074, China;
  • 2Department of Photonics Engineering, Technical University of Denmark, Lyngby DK- 2800, Denmark
  • show less
    References(111)

    [1] Diddams S A. The evolving optical frequency comb[J]. Journal of the Optical Society of America B, 27, B51-B62(2010).

    [3] Tamura K, Ippen E P, Haus H A et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser[J]. Optics Letters, 18, 1080-1082(1993).

    [7] Zhang S Y. Silver J M, del Bino L, et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser[J]. Optica, 6, 206-212(2019).

    [9] Armani D K, Kippenberg T J, Spillane S M et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 421, 925-928(2003).

    [16] Kippenberg T J, Gaeta A L, Lipson M et al. 361(6402): eaan8083(2018).

    [19] Hansson T, Modotto D, Wabnitz S. On the numerical simulation of Kerr frequency combs using coupled mode equations[J]. Optics Communications, 312, 134-136(2014).

    [22] Bao C Y, Yang C X. Mode-pulling and phase-matching in broadband Kerr frequency comb generation[J]. Journal of the Optical Society of America B, 31, 3074-3080(2014).

    [27] Yang K Y, Oh D Y, Lee S H et al. Bridging ultrahigh-Q devices and photonic circuits[J]. Nature Photonics, 12, 297-302(2018).

    [30] Wang P H. Jaramillo-Villegas J A, Xuan Y, et al. Intracavity characterization of micro-comb generation in the single-soliton regime[J]. Optics Express, 24, 10890-10897(2016).

    [31] Karpov M, Guo H R, Lucas E et al. Universal dynamics and controlled switching of dissipative Kerr solitons in optical microresonators[J]. Nature Physics, 13, 94-102(2017).

    [32] Yu M J, Okawachi Y, Griffith A G et al. Mode-locked mid-infrared frequency combs in a silicon microresonator[J]. Optica, 3, 854-860(2016).

    [36] Gong Z, Bruch A, Shen M H et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators[J]. Optics Letters, 43, 4366-4369(2018).

    [38] Chang L, Xie W, Shu H et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators[J]. Nature Communications, 11, 1331(2020).

    [39] Carmon T, Yang L, Vahala K. Dynamical thermal behavior and thermal self-stability of microcavities[J]. Optics Express, 12, 4742-4750(2004).

    [43] Karpov M, Guo H, Kordts A et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator[J]. Physical Review Letters, 116, 103902(2016).

    [50] Raja A S, Liu J Q, Volet N et al. -06-04)[2020-09-26]. https:∥arxiv.org/abs/1906.03194v1.(2019).

    [57] Obrzud E, Rainer M, Harutyunyan A et al. A microphotonic astrocomb[J]. Nature Photonics, 13, 31-35(2019).

    [58] Weng W L, Kaszubowska-Anandarajah A, He J J et al. -06-18)[2020-09-26]. https:∥arxiv., org/abs/2006, 10662(2020).

    [59] Stern L, Stone J R, Kang S, stabilization[J]. Science Advances et al. 6(9): eaax6230(2020).

    [60] Liu J, Tian H, Lucas E et al. Monolithic piezoelectric control of soliton microcombs[J]. Nature, 583, 385-390(2020).

    [61] Yi X, Yang Q F, Yang K Y et al. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities[J]. Optics Letters, 41, 3419-3422(2016).

    [62] Yang Q F, Yi X, Yang K Y et al. Stokes solitons in optical microcavities[J]. Nature Physics, 13, 53-57(2017).

    [64] Yang Q F, Yi X, Yang K Y et al. Spatial-mode-interaction-induced dispersive waves and their active tuning in microresonators[J]. Optica, 3, 1132-1135(2016).

    [65] Bao C Y, Xuan Y, Leaird D E et al. Spatial mode-interaction induced single soliton generation in microresonators[J]. Optica, 4, 1011-1015(2017).

    [66] Guo H R, Lucas E. Pfeiffer M H P, et al. Inter-mode breather solitons in optical microresonators. [C]∥CLEO Pacific Rim Conference, July 29-August 3, 2018, Hong Kong, China. Washington, DC: OSA, W1B, 2(2018).

    [67] Lucas E, Guo H R, Jost J D et al. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators[J]. Physical Review A, 95, 043822(2017).

    [68] Yi X, Yang Q F, Zhang X Y et al. Single mode dispersive waves and soliton microcomb dynamics[J]. Nature Communications, 8, 14869(2017).

    [69] Bao C Y. Jaramillo-Villegas J A, Xuan Y, et al. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator[J]. Physical Review Letters, 117, 163901(2016).

    [70] Yu M J, Jang J K, Okawachi Y et al. Breather soliton dynamics in microresonators[J]. Nature Communications, 8, 14569(2017).

    [71] Lucas E, Karpov M, Guo H et al. Breathing dissipative solitons in optical microresonators[J]. Nature Communications, 8, 736(2017).

    [72] Weng W L, Bouchand R, Lucas E et al. Heteronuclear soliton molecules in optical microresonators[J]. Nature Communications, 11, 2402(2020).

    [73] Cole D C, Lamb E S. Del'Haye P, et al. Soliton crystals in Kerr resonators[J]. Nature Photonics, 11, 671-676(2017).

    [74] Karpov M. Pfeiffer M H P, Guo H R, et al. Dynamics of soliton crystals in optical microresonators[J]. Nature Physics, 15, 1071-1077(2019).

    [75] He Y, Ling J W, Li M X et al. Perfect soliton crystals on demand[J]. Laser & Photonics Reviews, 14, 1900339(2020).

    [76] Yang Q F, Yi X, Yang K Y et al. Counter-propagating solitons in microresonators[J]. Nature Photonics, 11, 560-564(2017).

    [77] Lucas E, Lihachev G, Bouchand R et al. Spatial multiplexing of soliton microcombs[J]. Nature Photonics, 12, 699-705(2018).

    [78] Jang J K, Klenner A, Ji X C et al. Synchronization of coupled optical microresonators[J]. Nature Photonics, 12, 688-693(2018).

    [79] Xue X X, Xuan Y, Wang P H et al. Normal-dispersion microcombs enabled by controllable mode interactions[J]. Laser & Photonics Reviews, 9, L23-L28(2015).

    [81] Yi X, Yang Q F, Yang K Y et al. Imaging soliton dynamics in optical microcavities[J]. Nature Communications, 9, 3565(2018).

    [82] Li B, Huang S W, Li Y et al. Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics[J]. Nature Communications, 8, 61(2017).

    [83] Chen L, Zhao Y J, Wang W Q et al. Ultrafast soliton dynamics of micro-combs observed by aberration-free temporal magnifier. [C]∥Conference on Lasers and Electro-Optics, May 10-15, 2020, Washington, DC. Washington, DC: OSA, JW2F, 30(2020).

    [84] Dorrer C, Maywar D N. RF spectrum analysis of optical signals using nonlinear optics[J]. Journal of Lightwave Technology, 22, 266-274(2004).

    [85] Wang R, Chen L, Hu H et al. Precise dynamic characterization of microcombs assisted by an RF spectrum analyzer with THz bandwidth and MHz resolution[J]. Optics Express, 29, 2153-2161(2020).

    [86] Del'Haye P, Coillet A, Fortier T et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb[J]. Nature Photonics, 10, 516-520(2016).

    [87] Newman Z L, Maurice V, Drake T E et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 6, 680-685(2019).

    [88] Marin-Palomo P, Kemal J N, Karpov M et al. Microresonator-based solitons for massively parallel coherent optical communications[J]. Nature, 546, 274-279(2017).

    [89] Mazur M, Suh M G, Fülöp A et al. -12-22)[2020-09-26]. https:∥arxiv.org/abs/1812.11046v1.(2018).

    [90] Spencer D T, Drake T, Briles T C et al. An optical-frequency synthesizer using integrated photonics[J]. Nature, 557, 81-85(2018).

    [91] Hu H, Chen L, Wang R L et al. Wideband high-resolution spectral analysis assisted by soliton micro-combs. [C]∥Conference on Lasers and Electro-Optics, May 10-15, 2020, Washington, DC. Washington, DC: OSA, JW2B, 31(2020).

    [92] Yang Q F, Suh M G, Yang K Y et al. Microresonator soliton dual-comb spectroscopy. [C]∥Science and Innovations 2017, May 14-19, 2017, San Jose, California. Washington, DC: OSA, SM4D, 4(2017).

    [93] Pavlov N G, Lihachev G, Koptyaev S et al. Soliton dual frequency combs in crystalline microresonators[J]. Optics Letters, 42, 514-517(2017).

    [94] Dutt A, Joshi C, Ji X et al. On-chip dual comb source for spectroscopy[J]. Science Advances, 4, e1701858(2018).

    [95] Yu M J, Okawachi Y, Griffith A G et al. Silicon-chip-based mid-infrared dual-comb spectroscopy[J]. Nature Communications, 9, 1869(2018).

    [96] Yang Q F, Shen B, Wang H et al. 363(6430): eaaw2317(2019).

    [97] Suh M G, Vahala K J. Soliton microcomb range measurement[J]. Science, 359, 884-887(2018).

    [98] Trocha P, Karpov M, Ganin D et al. Ultrafast optical ranging using microresonator soliton frequency combs[J]. Science, 359, 887-891(2018).

    [99] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications[J]. Communications Physics, 3, 85(2020).

    [100] Reichert J, Holzwarth R, Udem T et al. Measuring the frequency of light with mode-locked lasers[J]. Optics Communications, 172, 59-68(1999).

    [101] Telle H R, Steinmeyer G, Dunlop A E et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation[J]. Applied Physics B, 69, 327-332(1999).

    [102] Brasch V, Lucas E, Jost J D et al. Self-referenced photonic chip soliton Kerr frequency comb[J]. Light: Science & Applications, 6, e16202(2017).

    [103] Lamb E S, Carlson D R, Hickstein D D et al. Optical-frequency measurements with a Kerr microcomb and photonic-chip supercontinuum[J]. Physical Review Applied, 9, 024030(2018).

    [104] Puppe T, Sell A, Kliese R et al. Characterization of a DFG comb showing quadratic scaling of the phase noise with frequency[J]. Optics Letters, 41, 1877-1880(2016).

    [105] Newbury N R, Swann W C. Low-noise fiber-laser frequency combs[J]. Journal of the Optical Society of America B, 24, 1756-1770(2007).

    [106] Chen D Y, Kovach A, Poust S et al. Normal dispersion silicon oxynitride microresonator Kerr frequency combs[J]. Applied Physics Letters, 115, 051105(2019).

    [107] Kovach A, Chen D Y, He J H et al. Emerging material systems for integrated optical Kerr frequency combs[J]. Advances in Optics and Photonics, 12, 135-222(2020).

    [108] Wu L E, Wang H M, Yang Q F et al. On-chip Q-factor greater than 1 billion. [C]∥Conference on Lasers and Electro-Optics, May 10-15, 2020, Washington, DC. Washington, DC: OSA, SW3J, 7(2020).

    [110] Kim B Y, Okawachi Y, Jang J K et al. Turn-key, high-efficiency Kerr comb source[J]. Optics Letters, 44, 4475-4478(2019).

    [111] Lee S H, Oh D Y, Yang Q F et al. Towards visible soliton microcomb generation[J]. Nature Communications, 8, 1295(2017).

    [112] Wang W Q, Zhang W F, Chu S T et al. Repetition rate multiplication pulsed laser source based on a microring resonator[J]. ACS Photonics, 4, 1677-1683(2017).

    Tools

    Get Citation

    Copy Citation Text

    Xinliang Zhang, Yanjing Zhao. Research Progress of Microresonator-Based Optical Frequency Combs[J]. Acta Optica Sinica, 2021, 41(8): 0823014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Sep. 27, 2020

    Accepted: Dec. 9, 2020

    Published Online: Apr. 10, 2021

    The Author Email: Zhang Xinliang (xlzhang@mail.hust.edu.cn)

    DOI:10.3788/AOS202141.0823014

    Topics