Laser & Optoelectronics Progress, Volume. 60, Issue 4, 0400002(2023)

Progress in Standardization of Fluorescence Flow Cytometer

Lü Yingkai, Wenli Liu, and Zhixiong Hu*
Author Affiliations
  • Center for Medical Metrology, National Institute of Metrology, Beijing 100029, China
  • show less
    References(107)

    [1] ur Rahman A, Khan S, Khan M. Transport of trans-activator of transcription (TAT) peptide in tumour tissue model: evaluation of factors affecting the transport of TAT evidenced by flow cytometry[J]. Journal of Pharmacy and Pharmacology, 72, 519-530(2019).

    [2] Suo Y Z, Gu Z Q, Wei X B. Advances of in vivo flow cytometry on cancer studies[J]. Cytometry A, 97, 15-23(2020).

    [3] Bonar M M, Tilton J C. High sensitivity detection and sorting of infectious human immunodeficiency virus (HIV-1) particles by flow virometry[J]. Virology, 505, 80-90(2017).

    [4] Hassan S S, Ruusuvuori P, Latonen L et al. Flow cytometry-based classification in cancer research: a view on feature selection[J]. Cancer Informatics, 14, 75-85(2016).

    [5] Nery A A, Nascimento I C, Glaser T et al. Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications[J]. Cytometry A, 83, 48-61(2013).

    [6] Wang Y Y, Hammes F, de Roy K et al. Past, present and future applications of flow cytometry in aquatic microbiology[J]. Trends in Biotechnology, 28, 416-424(2010).

    [7] Ruella M, Xu J, Barrett D M et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell[J]. Nature Medicine, 24, 1499-1503(2018).

    [8] Carpenter R O, Evbuomwan M O, Pittaluga S et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma[J]. Clinical Cancer Research, 19, 2048-2060(2013).

    [9] Davatchi F, Abdollahi B S, Mohyeddin M et al. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients[J]. International Journal of Rheumatic Diseases, 14, 211-215(2011).

    [10] Stavrakis S, Holzner G, Choo J et al. High-throughput microfluidic imaging flow cytometry[J]. Current Opinion in Biotechnology, 55, 36-43(2019).

    [11] Han Y Y, Gu Y, Zhang A C et al. Review: imaging technologies for flow cytometry[J]. Lab on a Chip, 16, 4639-4647(2016).

    [12] Erdbrügger U, Rudy C K, Etter M E et al. Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry[J]. Cytometry A, 85, 756-770(2014).

    [13] Finak G, Langweiler M, Jaimes M et al. Standardizing flow cytometry immunophenotyping analysis from the human ImmunoPhenotyping consortium[J]. Scientific Reports, 6, 20686(2016).

    [14] de Rosa S C. Vaccine applications of flow cytometry[J]. Methods, 57, 383-391(2012).

    [15] Jaye D L, Bray R A, Gebel H M et al. Translational applications of flow cytometry in clinical practice[J]. Journal of Immunology, 188, 4715-4719(2012).

    [16] Kalina T. Reproducibility of flow cytometry through standardization: opportunities and challenges[J]. Cytometry A, 97, 137-147(2020).

    [17] Wang L L, Hoffman R A. Standardization, calibration, and control in flow cytometry[J]. Current Protocols in Cytometry, 79, 1-3(2017).

    [18] McKinnon K M. Flow cytometry: an overview[J]. Current Protocols in Immunology, 120, 5(2018).

    [19] Steinkamp J A, Romero A, Horan P K et al. Multiparameter analysis and sorting of mammalian cells[J]. Experimental Cell Research, 84, 15-23(1974).

    [20] Ward M D, Kaduchak G. Fundamentals of acoustic cytometry[J]. Current Protocols in Cytometry, 84, e36(2018).

    [21] Li Z J, Li P Y, Xu J et al. Hydrodynamic flow cytometer performance enhancement by two-dimensional acoustic focusing[J]. Biomedical Microdevices, 22, 27(2020).

    [22] Goddard G R, Sanders C K, Martin J C et al. Analytical performance of an ultrasonic particle focusing flow cytometer[J]. Analytical Chemistry, 79, 8740-8746(2007).

    [23] Goddard G, Martin J C, Graves S W et al. Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer[J]. Cytometry A, 69, 66-74(2006).

    [24] Mandy F, Bergeron M, Houle G et al. Impact of the international program for Quality Assessment and Standardization for Immunological Measures Relevant to HIV/AIDS: QASI[J]. Cytometry, 50, 111-116(2002).

    [25] Barry S M, Condez A, Johnson M A et al. Determination of bronchoalveolar lavage leukocyte populations by flow cytometry in patients investigated for respiratory disease[J]. Cytometry, 50, 291-297(2002).

    [26] Piyasena M E, Austin Suthanthiraraj P P, Applegate R W, Jr et al. Multinode acoustic focusing for parallel flow cytometry[J]. Analytical Chemistry, 84, 1831-1839(2012).

    [27] Bonner W A, Hulett H R, Sweet R G et al. Fluorescence activated cell sorting[J]. Review of Scientific Instruments, 43, 404-409(1972).

    [28] Wang L S, Flanagan L A, Monuki E et al. Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry[J]. Lab on a Chip, 7, 1114-1120(2007).

    [29] Velev O D, Bhatt K H. On-chip micromanipulation and assembly of colloidal particles by electric fields[J]. Soft Matter, 2, 738-750(2006).

    [30] Yao B, Luo G A, Feng X et al. A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting[J]. Lab on a Chip, 4, 603-607(2004).

    [31] Schmid L, Weitz D A, Franke T. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter[J]. Lab on a Chip, 14, 3710-3718(2014).

    [32] Jakobsson O, Grenvall C, Nordin M et al. Acoustic actuated fluorescence activated sorting of microparticles[J]. Lab on a Chip, 14, 1943-1950(2014).

    [33] Ding X Y, Lin S C S, Kiraly B et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 11105-11109(2012).

    [34] Wu T H, Chen Y, Park S Y et al. Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter[J]. Lab on a Chip, 12, 1378-1383(2012).

    [35] Wang X L, Chen S X, Kong M et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies[J]. Lab on a Chip, 11, 3656-3662(2011).

    [36] Moffitt J R, Chemla Y R, Smith S B et al. Recent advances in optical tweezers[J]. Annual Review of Biochemistry, 77, 205-228(2008).

    [37] Ho C T, Lin R Z, Chang H Y et al. Micromachined electrochemical T-switches for cell sorting applications[J]. Lab on a Chip, 5, 1248-1258(2005).

    [38] Krüger J, Singh K, O’Neill A et al. Development of a microfluidic device for fluorescence activated cell sorting[J]. Journal of Micromechanics and Microengineering, 12, 486-494(2002).

    [39] Fu A Y, Chou H P, Spence C et al. An integrated microfabricated cell sorter[J]. Analytical Chemistry, 74, 2451-2457(2002).

    [40] Holzner G, Mateescu B, van Leeuwen D et al. High-throughput multiparametric imaging flow cytometry: toward diffraction-limited sub-cellular detection and monitoring of sub-cellular processes[J]. Cell Reports, 34, 108824(2021).

    [41] Hiramatsu K, Ideguchi T, Yonamine Y et al. High-throughput label-free molecular fingerprinting flow cytometry[J]. Science Advances, 5, eaau0241(2019).

    [42] Huang K R, Hiroki M, Zhao Y Q et al. Deep imaging flow cytometry[J]. Lab on a Chip, 22, 876-889(2022).

    [43] Gala de Pablo J, Lindley M, Hiramatsu K et al. High-throughput Raman flow cytometry and beyond[J]. Accounts of Chemical Research, 54, 2132-2143(2021).

    [44] Nitta N, Iino T, Isozaki A et al. Raman image-activated cell sorting[J]. Nature Communications, 11, 3452(2020).

    [45] Blasi T, Hennig H, Summers H D et al. Label-free cell cycle analysis for high-throughput imaging flow cytometry[J]. Nature Communications, 7, 10256(2016).

    [46] Doan M, Vorobjev I, Rees P et al. Diagnostic potential of imaging flow cytometry[J]. Trends in Biotechnology, 36, 649-652(2018).

    [47] Tree J A, Flick-Smith H, Elmore M J et al. The impact of “omic” and imaging technologies on assessing the host immune response to biodefence agents[J]. Journal of Immunology Research, 2014, 237043(2014).

    [48] Henery S, George T, Hall B et al. Quantitative image based apoptotic index measurement using multispectral imaging flow cytometry: a comparison with standard photometric methods[J]. Apoptosis, 13, 1054-1063(2008).

    [49] Ouk C, Jayat-Vignoles C, Donnard M et al. Both CD62 and CD162 antibodies prevent formation of CD36-dependent platelets, rosettes, and artefactual pseudoexpression of platelet markers on white blood cells: a study with ImageStream®[J]. Cytometry A, 79, 477-484(2011).

    [50] Darzynkiewicz Z, Traganos F, Zhao H et al. Analysis of individual molecular events of DNA damage response by flow- and image-assisted cytometry[M]. Methods in cell biology, 115-147(2011).

    [51] Betz S A, Foucar K, Head D R et al. False-positive flow cytometric platelet glycoprotein IIb/IIIa expression in myeloid leukemias secondary to platelet adherence to blasts[J]. Blood, 79, 2399-2403(1992).

    [52] Placke T, Örgel M, Schaller M et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells[J]. Cancer Research, 72, 440-448(2012).

    [53] Ugawa M, Sadao O. High-speed 3D imaging flow cytometry with optofluidic spatial transformation[J]. Biomedical Optics Express, 13, 3647-3656(2022).

    [54] Blasi T, Hennig H, Summers H D et al. Label-free cell cycle analysis for high-throughput imaging flow cytometry[J]. Nature Communications, 7, 10256(2016).

    [55] Adan A, Alizada G, Kiraz Y et al. Flow cytometry: basic principles and applications[J]. Critical Reviews in Biotechnology, 37, 163-176(2017).

    [56] Baumgarth N, Roederer M. A practical approach to multicolor flow cytometry for immunophenotyping[J]. Journal of Immunological Methods, 243, 77-97(2000).

    [57] Kim K H, Sederstrom J M. Assaying cell cycle status using flow cytometry[J]. Current Protocols in Molecular Biology, 111, 1-16(2015).

    [58] Rosner M, Schipany K, Hengstschläger M. Merging high-quality biochemical fractionation with a refined flow cytometry approach to monitor nucleocytoplasmic protein expression throughout the unperturbed mammalian cell cycle[J]. Nature Protocols, 8, 602-626(2013).

    [59] Nunez R. DNA measurement and cell cycle analysis by flow cytometry[J]. Current Issues in Molecular Biology, 3, 67-70(2001).

    [60] Wlodkowic D, Skommer J, Darzynkiewicz Z. Flow cytometry-based apoptosis detection[J]. Methods in Molecular Biology, 559, 19-32(2009).

    [61] Lecoeur H. Nuclear apoptosis detection by flow cytometry: influence of endogenous endonucleases[J]. Experimental Cell Research, 277, 1-14(2002).

    [62] Darzynkiewicz Z, Bruno S, Del Bino G et al. Features of apoptotic cells measured by flow cytometry[J]. Cytometry, 13, 795-808(1992).

    [63] Vermes I, Haanen C, Reutelingsperger C. Flow cytometry of apoptotic cell death[J]. Journal of Immunological Methods, 243, 167-190(2000).

    [64] Kagina B M, Mansoor N, Kpamegan E P et al. Qualification of a whole blood intracellular cytokine staining assay to measure mycobacteria-specific CD4 and CD8 T cell immunity by flow cytometry[J]. Journal of Immunological Methods, 417, 22-33(2015).

    [65] Jung T, Schauer U, Heusser C et al. Detection of intracellular cytokines by flow cytometry[J]. Journal of Immunological Methods, 159, 197-207(1993).

    [66] Maino V C, Picker L J. Identification of functional subsets by flow cytometry: intracellular detection of cytokine expression[J]. Cytometry, 34, 207-215(1998).

    [67] Owens M A, Vall H G, Hurley A A et al. Validation and quality control of immunophenotyping in clinical flow cytometry[J]. Journal of Immunological Methods, 243, 33-50(2000).

    [68] Pitoiset F, Barbié M, Monneret G et al. A standardized flow cytometry procedure for the monitoring of regulatory T cells in clinical trials[J]. Cytometry B, Clinical Cytometry, 94, 621-626(2018).

    [69] Schwartz A, Wang L L, Early E et al. Quantitating fluorescence intensity from fluorophore: the definition of MESF assignment[J]. Journal of Research of the National Institute of Standards and Technology, 107, 83-91(2002).

    [70] Gaigalas A K, Li L, Henderson O et al. The development of fluorescence intensity standards[J]. Journal of Research of the National Institute of Standards and Technology, 106, 381-389(2001).

    [71] Wang L L, Gaigalas A K, Abbasi F et al. Quantitating fluorescence intensity from fluorophores: practical use of MESF values[J]. Journal of Research of the National Institute of Standards and Technology, 107, 339-353(2002).

    [72] Wood J C S. Establishing and maintaining system linearity[J]. Current Protocols in Cytometry, 1-4(2009).

    [75] DeRose P, Tian L H, Elsheikh E et al. Expanding NIST calibration of fluorescent microspheres for flow cytometry to more fluorescence channels and smaller particles[J]. Materials, 13, 4111(2020).

    [76] Maecker H T, McCoy J P, Nussenblatt R. Standardizing immunophenotyping for the human immunology project[J]. Nature Reviews Immunology, 12, 191-200(2012).

    [77] Hultin L E, Chow M, Jamieson B D et al. Comparison of interlaboratory variation in absolute T-cell counts by single-platform and optimized dual-platform methods[J]. Cytometry B, Clinical Cytometry, 78, 194-200(2010).

    [78] Böttcher S, Engelmann R, Grigore G et al. Expert-independent classification of mature B-cell neoplasms using standardized flow cytometry: a multicentric study[J]. Blood Advances, 6, 976-992(2022).

    [79] Kalina T, Flores-Montero J, van der Velden V H J et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols[J]. Leukemia, 26, 1986-2010(2012).

    [80] Welsh J A, van der Pol E, Arkesteijn G J A et al. MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments[J]. Journal of Extracellular Vesicles, 9, 1713526(2020).

    [81] Cointe S, Judicone C, Robert S et al. Standardization of microparticle enumeration across different flow cytometry platforms: results of a multicenter collaborative workshop[J]. Journal of Thrombosis and Haemostasis, 15, 187-193(2017).

    [82] van der Vlist E J, Nolte-’t Hoen E N M, Stoorvogel W et al. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry[J]. Nature Protocols, 7, 1311-1326(2012).

    [83] Robert S, Lacroix R, Poncelet P et al. High-sensitivity flow cytometry provides access to standardized measurement of small-size microparticles: brief report[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1054-1058(2012).

    [84] Nolan J P, Jones J C. Detection of platelet vesicles by flow cytometry[J]. Platelets, 28, 256-262(2017).

    [85] Chen L T, Lin X Y, Wang J B. Accuracy of platelet count by UniCel DxH 800 Coulter hematology analyzer[J]. Laboratory Medicine, 31, 694-696(2016).

    [86] Liu D M, Huang B L, Shi J F. Effect of sample storage temperature and time on lymphocyte subsets and HLA-B27 detected by flow cytometry[J]. Chinese Journal of Hemorheology, 26, 354-358(2016).

    [87] Zhang H H, Zhang C Y, Yang J et al. A flow cytometric method for the detection of alkaline phosphatase expression on the membrane of neutrophils[J]. Chinese Journal of Laboratory Medicine, 37, 623-627(2014).

    [88] Lü Y, Yan D D, Zhang W et al. Establishment of normal reference value for CD64 in healthy adolescents aged 14-16 years by CantoⅡ flow cytometer[J]. Laboratory Medicine and Clinic, 13, 29-30(2016).

    [89] Yu Q Q, Wang H P, Zhai Z M et al. Clinical significance of determination of neutrophil CD64 mean fluorescence intensity index using flow cytometry in diagnosis of infection diseases[J]. Clinical Focus, 26, 383-387(2011).

    [90] Fang P Q, Sun L, Gu M X et al. Evaluation and clinical application of BD FACS canto Ⅱ flow cytometer[J]. Journal of Modern Laboratory Medicine, 34, 94-99(2019).

    [91] Chen S Y, Chen J, Lin Y et al. Methodology verification on the performance of BD FACSCanto Ⅱ flow cytometry analyzer[J]. Laboratory Medicine, 31, 405-411(2016).

    [92] Luo D P. Application of three-color fluorescence labeling technique by flow cytometry in immunophenotyping of leukemia[J]. China Medical Engineering, 24, 123-124(2016).

    [93] Wang X L, Li A, Yang S. Establishment of evaluation methods for the performance of flow cytometer[J]. International Journal of Laboratory Medicine, 36, 1366-1367, 1369(2015).

    [94] Mizrahi O, Ish Shalom E, Baniyash M et al. Quantitative flow cytometry: concerns and recommendations in clinic and research[J]. Cytometry B, Clinical Cytometry, 94, 211-218(2018).

    [95] Stoner S A, Duggan E, Condello D et al. High sensitivity flow cytometry of membrane vesicles[J]. Cytometry A, 89, 196-206(2016).

    [96] Tan X F, Patil R, Bartosik P et al. In vivo flow cytometry of extremely rare circulating cells[J]. Scientific Reports, 9, 3366(2019).

    [97] Arraud N, Gounou C, Turpin D et al. Fluorescence triggering: a general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry[J]. Cytometry A, 89, 184-195(2016).

    [98] Galanzha E I, Zharov V P. Photoacoustic flow cytometry[J]. Methods, 57, 280-296(2012).

    [99] Li C B, Lu H, Zhou W B et al. Analysis of lymphocyte subsets detections in clinical laboratories in China[J]. Journal of Clinical Transfusion and Laboratory Medicine, 17, 203-208(2015).

    [100] Hou J, Jia H X, Bai Y S L. 355 nm all-solid state ultraviolet laser with high stability end-pumped by 915 nm laser diode[J]. Laser & Optoelectronics Progress, 58, 1914003(2021).

    [101] O’Donnell E A, Ernst D N, Hingorani R. Multiparameter flow cytometry: advances in high resolution analysis[J]. Immune Network, 13, 43-54(2013).

    [102] Shapiro H M, Perlmutter N G. Personal cytometers: slow flow or no flow?[J]. Cytometry A, 69, 620-630(2006).

    [103] Kawabe K, Ochi S, Yoshino Y et al. Metabolic status and resistin in chronic schizophrenia over a 2-year period with continuous atypical antipsychotics[J]. Therapeutic Advances in Psychopharmacology, 5, 271-277(2015).

    [104] Fulwyler M J, Glascock R B, Hiebert R D et al. Device which separates minute particles according to electronically sensed volume[J]. Review of Scientific Instruments, 40, 42-48(1969).

    [105] da Silva E D, de Oliveira B C, Pereira A et al. A flow cytometry-based serological assay to detect visceral leishmaniasis in HIV-infected patients[J]. Frontiers in Medicine, 8, 553280(2021).

    [106] Chattopadhyay P K, Roederer M. Good cell, bad cell: flow cytometry reveals T-cell subsets important in HIV disease[J]. Cytometry A, 77, 614-622(2010).

    [107] Godoy-Ramirez K, Mäkitalo B, Thorstensson R et al. A novel assay for assessment of HIV-specific cytotoxicity by multiparameter flow cytometry[J]. Cytometry A, 68, 71-80(2005).

    [108] Saraiva L, Wang L L, Kammel M et al. Comparison of volumetric and bead-based counting of CD34 cells by single-platform flow cytometry[J]. Cytometry B, Clinical Cytometry, 96, 508-513(2019).

    [109] Ai T, Tabe Y, Takemura H et al. Novel flowcytometry-based approach of malignant cell detection in body fluids using an automated hematology analyzer[J]. PLoS One, 13, e0190886(2018).

    Tools

    Get Citation

    Copy Citation Text

    Lü Yingkai, Wenli Liu, Zhixiong Hu. Progress in Standardization of Fluorescence Flow Cytometer[J]. Laser & Optoelectronics Progress, 2023, 60(4): 0400002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jan. 28, 2022

    Accepted: Mar. 17, 2022

    Published Online: Feb. 14, 2023

    The Author Email: Hu Zhixiong (huzhixiong@nim.ac.cn)

    DOI:10.3788/LOP220662

    Topics