Journal of Innovative Optical Health Sciences, Volume. 18, Issue 1, 2450026(2025)
Quantitative evaluation of intensity fidelity of super-resolution reconstruction for structured illumination microscopy
[1] J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, L. Schermelleh. Strategic and practical guidelines for successful structured illumination microscopy. Nat. Protoc., 12, 988-1010(2017).
[2] Y. Wu, H. Shroff. Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat. Methods, 15, 1011-1019(2018).
[3] X. Chen, S. Zhong, Y. Hou, R. Cao, W. Wang, D. Li, Q. Dai, D. Kim, P. Xi. Super-resolution structured illumination microscopy reconstruction algorithms: A review. Light Sci. Appl., 12, 172(2023).
[4] Z. Wang, T. Zhao, H. Hao, Y. Cai, K. Feng, X. Yun, Y. Liang, S. Wang, Y. Sun, P. R. Bianco, K. Oh, M. Lei. High-speed image reconstruction for optically sectioned, super-resolution structured illumination microscopy. Adv. Photon., 4, 026003(2022).
[5] G. Wen, S. Li, Y. Liang, L. Wang, J. Zhang, X. Chen, X. Jin, C. Chen, Y. Tang, H. Li. Spectrum-optimized direct image reconstruction of super-resolution structured illumination microscopy. PhotoniX, 4, 19(2023).
[6] S. A. Shroff, J. R. Fienup, D. R. Williams. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution. J. Opt. Soc. Am. A, 26, 413(2009).
[7] S. A. Shroff, J. R. Fienup, D. R. Williams. Lateral superresolution using a posteriori phase shift estimation for a moving object: experimental results. J. Opt. Soc. Am. A, 27, 1770(2010).
[8] K. Wicker. Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space. Opt. Exp., 21, 24692(2013).
[9] K. Wicker, O. Mandula, G. Best, R. Fiolka, R. Heintzmann. Phase optimisation for structured illumination microscopy. Opt. Exp., 21, 2032(2013).
[10] M. Lahrberg, M. Singh, K. Khare, B. S. Ahluwalia. Accurate estimation of the illumination pattern’s orientation and wavelength in sinusoidal structured illumination microscopy. Appl. Opt., 57, 1019-1025(2018).
[11] J. Qian, Y. Cao, Y. Bi, H. Wu, Y. Liu, Q. Chen, C. Zuo. Structured illumination microscopy based on principal component analysis. eLight, 3, 4(2023).
[12] M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, J.-A. Conchello, C. J. Cogswell, A. G. Tescher, T. Wilson. Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII, 141-150(2000).
[13] A. Lal, C. Shan, P. Xi. Structured illumination microscopy image reconstruction algorithm. IEEE J. Select. Topics Quantum Electron., 22, 50-63(2016).
[14] G. Wen, S. Li, L. Wang, X. Chen, Z. Sun, Y. Liang, X. Jin, Y. Xing, Y. Jiu, Y. Tang, H. Li. High-fidelity structured illumination microscopy by point-spread-function engineering. Light Sci. Appl., 10, 70(2021).
[15] J. Fan, X. Huang, L. Li, S. Tan, L. Chen. A protocol for structured illumination microscopy with minimal reconstruction artifacts. Biophys. Rep., 5, 80-90(2019).
[16] Z. Wang, T. Zhao, Y. Cai, J. Zhang, H. Hao, Y. Liang, S. Wang, Y. Sun, T. Chen, P. R. Bianco, K. Oh, M. Lei. Rapid, artifact-reduced, image reconstruction for super-resolution structured illumination microscopy. Innovation, 4, 100425(2023).
[17] X. Huang, J. Fan, L. Li, H. Liu, R. Wu, Y. Wu, L. Wei, H. Mao, A. Lal, P. Xi, L. Tang, Y. Zhang, Y. Liu, S. Tan, L. Chen. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol., 36, 451-459(2018).
[18] W. Zhao, S. Zhao, L. Li, X. Huang, S. Xing, Y. Zhang, G. Qiu, Z. Han, Y. Shang, D. Sun, C. Shan, R. Wu, L. Gu, S. Zhang, R. Chen, J. Xiao, Y. Mo, J. Wang, W. Ji, X. Chen, B. Ding, Y. Liu, H. Mao, B.-L. Song, J. Tan, J. Liu, H. Li, L. Chen. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat. Biotechnol., 40, 606-617(2022).
[19] R. Heintzmann, C. G. Cremer. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc. SPIE, 3568, 185-196(1999).
[20] M. G. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).
[21] M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J., 94, 4957-4970(2008).
[22] C. Qiao, D. Li, Y. Guo, C. Liu, T. Jiang, Q. Dai, D. Li. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat. Methods, 18, 194-202(2021).
[23] C. Qiao, D. Li, Y. Liu, S. Zhang, K. Liu, C. Liu, Y. Guo, T. Jiang, C. Fang, N. Li, Y. Zeng, K. He, X. Zhu, J. Lippincott-Schwartz, Q. Dai, D. Li. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nat. Biotechnol., 41, 367-377(2023).
[24] H. Wang, Y. Rivenson, Y. Jin, Z. Wei, R. Gao, H. Günaydın, L. A. Bentolila, C. Kural, A. Ozcan. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Meth., 16, 103-110(2019).
[25] X. Chen, Y. Hou, P. Xi. Parameter estimation of the structured illumination pattern based on principal component analysis (PCA): PCA-SIM. Light Sci. Appl., 12, 41(2023).
[26] Z. Luo, G. Wu, M. Kong, Z. Chen, Z. Zhuang, J. Fan, T. Chen. Structured illumination-based super-resolution live-cell quantitative FRET imaging. Photon. Res., 11, 887(2023).
[27] Y. Mo, K. Wang, L. Li, S. Xing, S. Ye, J. Wen, X. Duan, Z. Luo, W. Gou, T. Chen, Y.-H. Zhang, C. Guo, J. Fan, L. Chen. Quantitative structured illumination microscopy via a physical model-based background filtering algorithm reveals actin dynamics. Nat. Commun., 14, 3089(2023).
[28] A. Descloux, K. S. Grußmayer, A. Radenovic. Parameter-free image resolution estimation based on decorrelation analysis. Nat. Methods, 16, 918-924(2019).
[29] M. Müller, V. Mönkemöller, S. Hennig, W. Hübner, T. Huser. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun., 7, 10980(2016).
Get Citation
Copy Citation Text
Yujun Tang, Linbo Wang, Gang Wen, Hui Li. Quantitative evaluation of intensity fidelity of super-resolution reconstruction for structured illumination microscopy[J]. Journal of Innovative Optical Health Sciences, 2025, 18(1): 2450026
Category: Research Articles
Received: Jul. 10, 2024
Accepted: Sep. 2, 2024
Published Online: Feb. 21, 2025
The Author Email: Wen Gang (weng@sibet.ac.cn), Li Hui (lihui@nimte.ac.cn)