Journal of the Chinese Ceramic Society, Volume. 51, Issue 6, 1565(2023)

Effect of Steel Fiber on Thermal Shock Resistance of Mullite Castable

FENG Haixia1、*, JIAO Yunjie2, CAO Xiying1, LIU Jun1, and HAN Yihui1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(15)

    [1] [1] HASSELMAN D P H. Elastic energy at fracture and surface energy as design criteria for thermal shock[J]. J Am Ceram Soc, 1963, 46(11): 535-540.

    [3] [3] AKSEL C, RILEY F L. Young′s modulus measurements of magnesia-spinel composites using load-deflection curves, sonic modulus, strain gauges and Rayleigh waves[J]. J Eur Ceram Soc, 2003, 23(16): 3089-3096.

    [4] [4] MIYAJI D Y, TONNESEN T, RODRIGUES J A. Fracture energy and thermal shock damage resistance of refractory castables containing eutectic aggregates[J]. Ceram Int, 2014, 40(9): 15227-15239.

    [5] [5] HOL?APEK O, REITERMAN P, KONVALINKA P. Binder for refractory cement composites-hydration, changing due to high temperatures and fracture Energy[J]. Mater Sci Forum, 2015, 824: 185–190.

    [7] [7] VARGAS R, NEGGERS J, CANTO R B, et al. Analysis of wedge splitting test on refractory castable via integrated DIC[J]. J Eur Ceram Soc, 2016, 36(16): 4309-4317.

    [8] [8] VARGAS R, NEGGERS J, CANTO R B, et al. Comparison of two full-field identification methods for the wedge splitting test on a refractory[J]. J Eur Ceram Soc, 2018, 38(16): 5569-5579.

    [10] [10] RIBEIRO S, RODRIGUES J A. The influence of microstructure on the maximum load and fracture energy of refractory castables[J]. Ceram Int, 2010, 36(1): 263-274.

    [11] [11] CUENCA E, FERRARA L. Fracture toughness parameters to assess crack healing capacity of fiber reinforced concrete under repeated cracking-healing cycles[J]. Theor Appl Fract Mech, 2020, 106: 1-12.

    [12] [12] DAI Y J, LI Y W, JIN S L, et al. Fracture behavior of magnesia refractory materials under combined cyclic thermal shock and mechanical loading conditions[J]. J Am Ceram Soc, 2019, 103(3): 1956-1969.

    [13] [13] LEE W E, VIEIRA W, ZHANG S, et al. Castable refractory concretes[J]. Int Mater Rev, 2001, 46(3): 145-167.

    [14] [14] BELRHITI Y, POP O, GERMANEAU A, et al. Investigation of the impact of micro-cracks on fracture behavior of magnesia products using wedge splitting test and digital image correlation[J]. J Eur Ceram Soc, 2015, 35(2): 823-829.

    [15] [15] ZHU T B, LI Y W, SANG S B, et al. Fracture behavior of low carbon MgO-C refractories using the wedge splitting test[J]. J Eur Ceram Soc, 2017, 37(4): 1789-1797.

    [16] [16] HARMUTH H, RIEDER K, KROBATH M, et al. Investigation of the nonlinear fracture behaviour of ordinary ceramic refractory materials[J]. Mater Sci Eng, A, 1996, 214: 53-61.

    [17] [17] HARMUTH H. Stability of crack propagation associated with fracture energy determined by wedge splitting specimen[J]. Theor Appl Fract Mech, 1995, 23: 103-108.

    [19] [19] LI Daibing. Investigation on the thermal shock resistance of the corundum-spinel porous plug for ladle (in Chinese dissertation). Luoyang: Luoyang Insitute of Refracotory Research, 2008.

    Tools

    Get Citation

    Copy Citation Text

    FENG Haixia, JIAO Yunjie, CAO Xiying, LIU Jun, HAN Yihui. Effect of Steel Fiber on Thermal Shock Resistance of Mullite Castable[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1565

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 29, 2022

    Accepted: --

    Published Online: Aug. 13, 2023

    The Author Email: FENG Haixia (fenghx2010@126.com)

    DOI:

    CSTR:32186.14.

    Topics