Journal of Innovative Optical Health Sciences, Volume. 17, Issue 5, 2440001(2024)
RBC aggregation, deformation and adhesion to endothelium: Role of nitric oxide derived from L-Arginine and sodium nitroprusside
[1] J. W. Weisel, R. I. Litvinov. Red blood cells: The forgotten player in hemostasis and thrombosis. J. Thromb. Haemost., 17, 271-282(2019).
[2] V. Pretini, M. H. Koenen, L. Kaestner, M. H. A. M. Fens, R. M. Schiffelers, M. Bartels, R. Van Wijk. Red blood cells: Chasing interactions. Front. Physiol., 10, 945-962(2019).
[3] O. Baskurt, B. Neu, H. J. Meiselman. Red Blood Cell Aggregation(2011).
[4] S. Chien. Red cell deformability and its relevance to blood flow. Annu. Rev. Physiol., 49, 177-192(1987).
[5] R. Huisjes, A. Bogdanova, W. W. van Solinge, R. M. Schiffelers, L. Kaestner, R. van Wijk. Squeezing for life – properties of red blood cell deformability. Front. Physiol., 9, 00656(2018).
[6] J.-H. Kim, H. Lee, B. Lee, S. Shin. Influence of shear stress on erythrocyte aggregation. Clin. Hemorheol. Microcirc., 62, 165-171(2016).
[7] O. K. Baskurt, H. J. Meiselman. Erythrocyte aggregation: Basic aspects and clinical importance. Clin. Hemorheol. Microcirc., 53, 23-37(2013).
[8] A. Maslianitsyna, P. Ermolinskiy, A. Lugovtsov, A. Pigurenko, M. Sasonko, Y. Gurfinkel, A. Priezzhev. Multimodal diagnostics of microrheologic alterations in blood of coronary heart disease and diabetic patients. Diagnostics, 11, 76(2021).
[9] K. Lee, M. Kinnunen, M. D. Khokhlova, E. V. Lyubin, A. V. Priezzhev, I. Meglinski, A. A. Fedyanin. Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions. J. Biomed. Opt., 21, 035001(2016).
[10] P. Ermolinskiy, A. Lugovtsov, F. Yaya, K. Lee, L. Kaestner, C. Wagner, A. Priezzhev. Effect of red blood cell aging in vivo on their aggregation properties in vitro: Measurements with laser tweezers. Appl. Sci., 10, 7581(2020).
[11] A. N. Semenov, E. A. Shirshin, A. V. Muravyov, A. V. Priezzhev. The effects of different signaling pathways in adenylyl cyclase stimulation on red blood cells deformability. Front Physiol., 10, 923(2019).
[12] M. Grau, S. Pauly, J. Ali, K. Walpurgis, M. Thevis, W. Bloch, F. Suhr. RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS One, 8, e56759(2013).
[13] L. Diederich et al. On the effects of reactive oxygen species and nitric oxide on red blood cell deformability. Front Physiol., 9, 332(2018).
[14] A. I. Maslianitsyna, P. B. Ermolinsky, A. E. Lugovtsov, A. V. Priezzhev. Study by optical techniques of the dependence of aggregation parameters of human red blood cells on their deformability. J. Biomed. Photon. Eng., 6, 020305(2020).
[15] D. Lazari, J. K. Freitas Leal, R. Brock, G. Bosman. The relationship between aggregation and deformability of red blood cells in health and disease. Front Physiol., 11, 288(2020).
[16] Y. Zhao, P. M. Vanhoutte, S. W. S. Leung. Vascular nitric oxide: Beyond eNOS. J. Pharmacol. Sci., 129, 83-94(2015).
[17] B. Özüyaman, M. Grau, M. Kelm, M. W. Merx, P. Kleinbongard. RBC NOS: Regulatory mechanisms and therapeutic aspects. Trends Mol. Med., 14, 314-322(2008).
[18] F. Leo et al. Red blood cell and endothelial eNOS independently regulate circulating nitric oxide metabolites and blood pressure. Circulation, 144, 870-889(2021).
[19] K. Neubauer, B. Zieger. Endothelial cells and coagulation. Cell Tissue Res., 387, 391-398(2022).
[20] P. M. Vanhoutte, T. Scott-Burden. The endothelium in health and disease. Tex. Heart Inst. J., 21, 62-67(1994).
[21] D. R. Riddell, J. S. Owen. Nitric oxide and platelet aggregation. Vitam. Horm., 57, 25-48(1997).
[22] S. I. Galkina, E. A. Golenkina, G. M. Viryasova, Y. M. Romanova, G. F. Sud’ina. Nitric oxide in life and death of neutrophils. Curr. Med. Chem., 26, 5764-5780(2019).
[23] O. K. Baskurt, P. Ulker, H. J. Meiselman. Nitric oxide, erythrocytes and exercise. Clin. Hemorheol. Microcirc., 49, 175-181(2011).
[24] D. Starzyk, R. Korbut, R. J. Gryglewski. Effects of nitric oxide and prostacyclin on deformability and aggregability of red blood cells of rats ex vivo and in vitro. J. Physiol. Pharmacol., 50, 629-637(1999).
[25] M. Bor-Kucukatay, R. B. Wenby, H. J. Meiselman, O. K. Baskurt. Effects of nitric oxide on red blood cell deformability. Am. J. Physiol.-Heart Circulatory Physiol., 284, H1577-H1584(2003).
[26] R. Korbut, R. J. Gryglewski. The effect of prostacyclin and nitric oxide on deformability of red blood cells in septic shock in rats. J. Physiol. Pharmacol., 47, 591-599(1996).
[27] A. V. Muravyov, P. V. Avdonin, I. A. Tikhomirova, S. V. Bulaeva, Ju. V. Malysheva. Effects of gasotransmitters on membrane elasticity and microrheology of erythrocytes. Biochem. (Mosc) Suppl. Ser. A Membr. Cell Biol., 13, 225-232(2019).
[28] J.-L. Wautier, M.-P. Wautier. Cellular and molecular aspects of blood cell–endothelium interactions in vascular disorders. Int. J. Mol. Sci., 21, 5315(2020).
[29] R. P. Hebbel, O. Yamada, C. F. Moldow, H. S. Jacob, J. G. White, J. W. Eaton. Abnormal adherence of sickle erythrocytes to cultured vascular endothelium. J. Clin. Invest., 65, 154-160(1980).
[30] D. K. Kaul, M. E. Fabry, R. L. Nagel. Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: Pathophysiological implications. Proc. Natl. Acad. Sci., 86, 3356-3360(1989).
[31] A. Koshkaryev, O. Zelig, N. Manny, S. Yedgar, G. Barshtein. Rejuvenation treatment of stored red blood cells reverses storage-induced adhesion to vascular endothelial cells. Transfusion (Paris), 49, 2136-2143(2009).
[32] Y. Colin, C. Le Van Kim, W. El Nemer. Red cell adhesion in human diseases. Curr. Opin. Hematol., 21, 186-192(2014).
[33] J.-L. Wautier, M.-P. Wautier. Molecular basis of erythrocyte adhesion to endothelial cells in diseases. Clin. Hemorheol. Microcirc., 53, 11-21(2013).
[34] R. Kaliyaperumal, X. Deng, H. J. Meiselman, H. Song, R. Dalan, M. K.-S. Leow, B. Neu. Depletion interaction forces contribute to erythrocyte-endothelial adhesion in diabetes. Biochem. Biophys. Res. Commun., 516, 144-148(2019).
[35] N. Mohandas, E. Evans. Adherence of sickle erythrocytes to vascular endothelial cells: Requirement for both cell membrane changes and plasma factors. Blood, 64, 282-287(1984).
[36] H. P. Fernandes, A. Fontes, A. Thomaz, V. Castro, C. L. Cesar, M. L. Barjas-Castro. Measuring red blood cell aggregation forces using double optical tweezers. Scand. J. Clin. Lab Invest., 73, 262-264(2013).
[37] N. Yeow, R. F. Tabor, G. Garnier. Atomic force microscopy: From red blood cells to immunohaematology. Adv. Colloid Interface Sci., 249, 149-162(2017).
[38] D. Tsvirkun, A. Grichine, A. Duperray, C. Misbah, L. Bureau. Microvasculature on a chip: Study of the endothelial surface layer and the flow structure of red blood cells. Sci. Rep., 7, 45036(2017).
[39] L. N. Diebel, D. M. Liberati. Red blood cell storage and adhesion to vascular endothelium under normal or stress conditions: An in vitro microfluidic study. J. Trauma Acute Care Surg., 86, 943-951(2019).
[40] R. Zhu, T. Avsievich, A. Popov, I. Meglinski. Optical tweezers in studies of red blood cells. Cells, 9, 545(2020).
[41] M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, S. T. O. Saad. Optical tweezers for measuring red blood cell elasticity: Application to the study of drug response in sickle cell disease. Eur. J. Haematol., 70, 207-211(2003).
[42] K. Matthews, E. S. Lamoureux, M.-E. Myrand-Lapierre, S. P. Duffy, H. Ma. Technologies for measuring red blood cell deformability. Lab Chip, 22, 1254-1274(2022).
[43] T. Avsievich, R. Zhu, A. Popov, A. Bykov, I. Meglinski. The advancement of blood cell research by optical tweezers. Rev. Phys., 5, 100043(2020).
[44] A. V. Priezzhev, K. Lee, N. N. Firsov, J. Lademann. Handbook of Optical Biomedical Diagnostics, Volume 2: Methods(2016).
[45] A. Y. Maklygin, A. V. Priezzhev, A. Karmenian, S. Y. Nikitin, I. S. Obolenskii, A. E. Lugovtsov, K. Li. Measurement of interaction forces between red blood cells in aggregates by optical tweezers. Quantum Elec., 42, 500-504(2012).
[46] C. Peris-Martínez, M. C. García-Domene, M. Penadés, M. J. Luque, E. Fernández-López, J. M. Artigas. Spectral transmission of the human corneal layers. J. Clin. Med., 10, 4490(2021).
[47] E. A. Jaffe, R. L. Nachman, C. G. Becker, C. R. Minick. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest., 52, 2745-2756(1973).
[48] O. N. Scheglovitova, Y. A. Romanov, E. V. Maksianina, N. V. Kabaeva, A. G. Pronin. Herpes simplex type I virus infection of cultured human vascular endothelial cells: Expression of cell adhesion molecules and induction of interferon and cytokine production by blood mononuclear cells. Russ. J. Immunol., 6, 367-376(2001).
[49] K. A. Zhdanova et al. Novel cationic meso-arylporphyrins and their antiviral activity against HSV-1. Pharmaceuticals, 14, 242(2021).
[50] A. A. Kapkov, A. N. Semenov, P. B. Ermolinskiy, A. E. Lugovtsov, A. V. Priezzhev. Forces of RBC interaction with single endothelial cells in stationary conditions: Measurements with laser tweezers. J. Innov. Opt. Health Sci., 14, 2142005(2021).
[51] P. Ermolinskiy, A. Lugovtsov, A. Maslyanitsina, A. Semenov, L. Dyachuk, A. Priezzhev. Interaction of erythrocytes in the process of pair aggregation in blood samples from patients with arterial hypertension and healthy donors: Measurements with laser tweezers. J. Biomed. Photon. Eng., 4, 030303(2018).
[52] P. B. Ermolinskiy, A. E. Lugovtsov, A. N. Semenov, A. V. Priezzhev. Red blood cell in the field of a beam of optical tweezers. Quantum Elec., 52, 22-27(2022).
[53] B. K. Lee, T. Alexy, R. B. Wenby, H. J. Meiselman. Red blood cell aggregation quantitated via Myrenne aggregometer and yield shear stress. Biorheology, 44, 29-35(2007).
[54] G. Artmann. Microscopic photometric quantification of stiffness and relaxation time of red blood cells in a flow chamber. Biorheology, 32, 553-570(1995).
[55] D. Schwartz, M. Mendonca, I. Schwartz, Y. Xia, J. Satriano, C. B. Wilson, R. C. Blantz. Inhibition of constitutive nitric oxide synthase (NOS) by nitric oxide generated by inducible NOS after lipopolysaccharide administration provokes renal dysfunction in rats. J. Clin. Invest., 100, 439-448(1997).
[56] A. Mozar, P. Connes, B. Collins, M.-D. Hardy-Dessources, M. Romana, N. Lemonne, W. Bloch, M. Grau. Red blood cell nitric oxide synthase modulates red blood cell deformability in sickle cell anemia. Clin. Hemorheol. Microcirc., 64, 47-53(2016).
[57] K. A. Lucas, G. M. Pitari, S. Kazerounian, I. Ruiz-Stewart, J. Park, S. Schulz, K. P. Chepenik, S. A. Waldman. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol. Rev., 52, 375(2000).
[58] A. V. Muravyov, I. A. Tikhomirova, A. A. Maimistova, S. V. Bulaeva, A. V. Zamishlayev, E. A. Batalova. Crosstalk between adenylyl cyclase signaling pathway and Ca2+ regulatory mechanism under red blood cell microrheological changes. Clin. Hemorheol. Microcirc., 45, 337-345(2010).
[59] E. Meram, B. D. Yilmaz, C. Bas, N. Atac, O. Yalcin, H. J. Meiselman, O. K. Baskurt. Shear stress-induced improvement of red blood cell deformability. Biorheology, 50, 165-176(2013).
[60] S. Shin, S. Mohan, H.-L. Fung. Intracellular L-arginine concentration does not determine NO production in endothelial cells: Implications on the ‘L-arginine paradox. Biochem. Biophys. Res. Commun., 414, 660-663(2011).
[61] S. L. Space, P. A. Lane, C. K. Pickett, J. V. Weil. Nitric oxide attenuates normal and sickle red blood cell adherence to pulmonary endothelium. Am. J. Hematol., 63, 200-204(2000).
Get Citation
Copy Citation Text
M. K. Maksimov, P. B. Ermolinskiy, O. N. Scheglovitova, N. N. Sklyankina, A. V. Muravyov, A. E. Lugovtsov, A. V. Priezzhev. RBC aggregation, deformation and adhesion to endothelium: Role of nitric oxide derived from L-Arginine and sodium nitroprusside[J]. Journal of Innovative Optical Health Sciences, 2024, 17(5): 2440001
Category: Research Articles
Received: Oct. 30, 2023
Accepted: Feb. 19, 2024
Published Online: Aug. 8, 2024
The Author Email: Maksimov M. K. (madoway@yandex.ru)