Electro-Optic Technology Application, Volume. 36, Issue 5, 23(2021)

Applications and Progress of Quantum Cascade Lasers

DENG Kai1... GAO Zhi-yuan1, HAN Long2 and WEI Lei2 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(43)

    [1] [1] Gmachl C, Capasso F, Sivco DL, et al. Recent progress in quantum cascade lasers and applications[J]. Reports on Progress in Physics, 2001, 64(11): 1533-1601.

    [3] [3] Kazarinov R F, Suris R A. Electric and electromagneticproperties of semiconductors with a super lattice[J]. Soviet Physics Semiconductors-USSR, 1972, 6(1): 120-+.

    [4] [4] Faist J, Capasso F, Sivco D, et al. Quantum cascade la. ser[J]. Science, 1994, 264(5158): 553.

    [5] [5] Beck M, Hofstetter D, Aellen T, et al. Continuous wave op. eration of a mid-infrared semiconductor laser at room tem. perature[J]. Science, 2002, 295(5553): 301-305.

    [6] [6] JFaist C, Gmach l, Capasso F, et al. Distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 1997, 70(20): 2670-2672.

    [7] [7] K.hler R, TredicuccA i, Beltram F, et al. Terahertz semi. conductor-hetero structure laser[J]. Nature, 2002, 417(6885): 156-159.

    [8] [8] ZHOU Wen-jia, WU Dong-hai, LU Quan-yong, et al. Sin. gle-mode, high-power, mid-infrared, quantum cascade la. ser phased arrays[J]. Scientific Reports, 2018, 8(26): 14866.

    [9] [9] LU Quan-yong, Slivken Steven, WU Dong-hai, et al. Highpower continuous wave operation of single mode quantumcascade lasers up to 5 W spanning λ~3.8-8.3 μm[J]. Op. tics Express, 2020, 28(10): 15181-15188.

    [10] [10] Wang F, Slivken S, Wu D H, et al. Room temperature quantum cascade lasers with 22% wall plug efficiency in continuous-wave operation.[J]. Optics Express, 2020, 28(12): 17532-17538.

    [11] [11] Dudelev V V, Dudelev V V, Mikhailov D A, et al. Devel. opment and study of high-power quantum-cascade lasers emitting at 4.5 4.6 m[J]. Quantum Electronics, 2020, 50(11): 989-994.

    [12] [12] CHENG Feng-min, ZHANG Jin-chuan, WANG Dong-bo, et al. Demonstration of high-power and stable single-mode in a quantum cascade laser using buried sampled grating [J]. Nanoscale Research Letters, 2019, 14(1): 123.

    [13] [13] SUN Yong-qiang, ZHANG Jin-chuan, CHENG Feng-min, et al. Beam steering characteristics in high-power quan. tum-cascade lasers emitting at ~4.6 μm[J]. Chinese Phys. ics B, 2021, 30(3): 034211.

    [14] [14] Dudelev V V, Mikhailov D A, Babichev A V, et al. High-power λ=8 Μm quantum-cascade lasers at room temper. ature[P]. Journal of Physics: Conference Series, 2019, 1400: 066048.

    [15] [15] Dudelev V V, Mikhailov D A, Babichev A V, et al. High-power(>1 W room-temperature quantum-cascade lasers for the long-wavelength IR region[J]. Quantum Electron. ics, 2020, 50(2): 141-142.

    [16] [16] ZHOU Wen-jia, LU Quan-yong, WU Dong-Hai, et al. High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 μm[J]. Optics Express, 2019, 27(11): 15776-15785.

    [17] [17] NIU S Z, LIU J Q, ZHANG J C, et al. Single-mode Fabry-Pérot quantum cascade lasers at λ ~10.5 μm[J]. Journal of Materials Science and Chemical Engineering, 2020, 8:31-37.

    [18] [18] WANG Huan, ZHANG Jin-chuan, CHENG Feng-min, et al. Watt-level, high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 7.7 μm[J]. Optics Express, 2020, 28(26): 40155-40163.

    [20] [20] ZENG Yong-quan, QIANG Bo, WANG Qi-jie. Photonic Engineering technology for the development of terahertz quantum cascade lasers[J]. Advanced Optical Materials, 2020, 8(3): 1900573.

    [21] [21] LU Quan-yong, WANG Fei-hu, WU Dong-hai, et al. Room temperature terahertz semiconductor frequency comb[J]. Nature Communications, 2019, 10(1): 2403.

    [22] [22] Shohei Hayashi, Akio Ito, Masahiro Hitaka, et al. Room temperature, single-mode 1.0 THz semiconductor source based on long-wavelength infrared quantum-cascade la. ser[J]. Applied Physics Express, 2020, 13(11): 112001.

    [23] [23] Di Gaspare Alessandra, Viti Leonardo, Beere Harvey E, etal. Homogeneous quantum cascade lasers operating as terahertz frequency combs over their entire operational re.gime[J]. Nanophotonics, 2020, 10(1): 181-186.

    [24] [24] TAN Zhi-yong, WANG Hong-yu, WAN Wen-jian, et al. Dual-beam terahertz quantum cascade laser with >1 W ef.fective output power[J]. Electronics Letters, 2020, 56(22): 1204-1206.

    [25] [25] Wu Sheng, Deev Andrei, Zhuang Yan, et al. Fast samplingfield deployable mud gas carbon isotope analyzer[J]. Geo. sciences, 2020, 10(9): 350.

    [26] [26] Nasir Ehson F, Sanders Scott T. Laser absorption tomogra.phy for ammonia measurement in diesel engine exhaust[J].Applied Physics B, 2020, 126(11): 178.

    [27] [27] Marilena Giglio, Andrea Zifarelli, Angelo Sampaolo, et al.Broadband detection of methane and nitrous oxide using adistributed-feedback quantum cascade laser array and quartz-enhanced photoacoustic sensing[J]. Photoacoustics, 2020, 17(5): 100159.

    [28] [28] Sobanski Nicolas, Tuzson Béla, Scheidegger Philipp, et al.Advances in high-precision NO2 measurement by quantum cascade laser absorption spectroscopy[J]. Applied Scienc. es, 2021, 11(3): 1222.

    [29] [29] LIU Ning-wu, XU Lin-guang, ZHOU Sheng, et al. Soil res. piration analysis using a mid-infrared quantum cascade la. ser and calibration-free WMS-based dual-gas sensor[J]. The Analyst, 2021, 146(12): 3841-3851.

    [30] [30] Ryohei Terabayashi, Terabayashi Ryohei, Saito Keisuke, et al. Mid-infrared cavity ring-down spectroscopy using DFB quantum cascade laser with optical feedback for ra. diocarbon detection[J]. Japanese Journal of Applied Phys. ics, 2020, 59(9): 092007.

    [33] [33] Stewart Jacob T, Beloin Jacob, Fournier Melanie, et al. Sen.sitive infrared spectroscopy of isoprene at the part per bil.lion level using a quantum cascade laser spectrometer[J]. Applied Physics B, 2020, 126(11): 181.

    [34] [34] Zimmerleiter Robert, Nikzad-Langerodi Ramin, Rucke. busch Cyril, et al. QCL-based mid-infrared hyperspectral busch Cyril, et al. QCL-based mid-infrared hyperspectral imaging of multilayer polymer oxygen baITier-films[J). Polyme r Testing, 2021, 98: 107190.

    [36] [36] Goertzen Nina, Pappesch Roberto, Fassunke Jana, et al. Quantum cascade laser-based infrared imaging as a la- bel-free and automated approach to determine mutations in lung adenocarcinoma[J]. The American Journal of Pa- thology, 2021, 191 (7): 1269-1280.

    [37] [37] Takuya Koyama, Naoto Shibata, Saiko Kino, et al. A com- pact mid-in frared spectroscopy system for healthcar e ap- plications based on a wavelength-swept, pulsed quantum cascade laser[J). Sensors, 2020, 20(12): 3438.

    [38] [38] lne L Jernelv, Dag Roar Hjelme, Astrid Aksnes. Infrared measurements of glucose in peritoneal fluid with a tune- able quantum cascade laser[J). Biomedical Optics Ex- press, 2020, 11(7): 3818-3829.

    [39] [39] Schwaighofer Andreas, Akhgar Christopher K, Lend! Bern- hard. Broadband laser-bas ed mid-IR spectroscopy for analysis of proteins and monitoring of enzyme activity[J].Spectrochimica acta Part A, Molecular and biomolecular spectroscopy, 2021, 253: 119563.

    [40] [40] VillanuevaL6pez Vladimir, PachecoLondofio Leonardo C, VillaITealGonzalez Reynaldo, et al. API content and blend uniformity using quantum cascade laser spectroscopy cou-pied with multivariat e analysis[]]. Pharmaceutics, 2021, 13(7): 985.

    [41] [41] Corrigan Paul, Martini Rainer, Whittaker Edward A, et al. Quantum cascade lasers and the Kruse mod el in free space optical communication[]]. Optics Express, 2009, 17 (6): 4355-4359.

    [42] [42] Tephen M Johnson, Emily Dial, Razeghi M. High-spe ed free space optical communications based on quantum cas- cade lasers and type-II superlattice detectors[P].OPTO, 2020.

    [43] [43] Pang Xiao-dan, Ozolins Oskars, Zhang Lu, et al. Free-space communications enabled by quantum cascade lasers[]]. Physica Status Solidi (a), 2020, 218 (3): 2000407.

    [44] [44] Mik olajczyk Janusz. Data link with a high-power pulsed quantum cascade laser operating at the wavelength of 4 .5μ,m[J]. Sensors (Basel, Switzerland), 2021, 21(9): 3231.

    [45] [45] Spitz Olivier, Herdt Andr eas, Wu Jiagui, et al. Private communication with quantum cascade laser photonic chaos [J]. Nature Communications, 2021, 12(1 ): 3327.

    [46] [46] LIU Chuan-wei, ZHAI Shen-qiang, ZHANG Jin-chuan, et al. Free-space communication based on quantum cascade laser[]]. Journal of Semiconductors, 2015, 36(9): 094009.

    [48] [48] MENG Bo, WANG Qi-jie. Broadly tun able single-mode mid-in frared quantum cascade lasers [J]. Journal of Op- tics, 2015, 17( 2 ): 023001.

    Tools

    Get Citation

    Copy Citation Text

    DENG Kai, GAO Zhi-yuan, HAN Long, WEI Lei. Applications and Progress of Quantum Cascade Lasers[J]. Electro-Optic Technology Application, 2021, 36(5): 23

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 29, 2021

    Accepted: --

    Published Online: Dec. 1, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics