Opto-Electronic Engineering, Volume. 49, Issue 10, 220183(2022)

Meta-holography: from concept to realization

Ke Xu1,†... Xinger Wang1,†, Xuhao Fan1, Yuncheng Liu1, Xuan Yu1, Hui Gao1,2,*, and Wei Xiong12,* |Show fewer author(s)
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • 2Optical Valley Laboratory, Wuhan, Hubei 430074, China
  • show less
    Figures & Tables(15)
    Design strategies for CGH devices based on metasurface. (a) Brief design strategy of meta-holographic devices; (b) Design process of holographic devices using metasurface based on geometric phase as an example
    Static meta-holography. (a) PB phase-modulated 3D on-axis transmission holograms based on gold nanoantennas[32]; (b) Two amplitude-modulated holograms of photon sieves with set relation[40]; (c) Complex amplitude modulation is achieved by adjusting the orientation angle and geometric parameters of the cell structure, and the holographic images at the wavelengths of 1.65 μm and 0.94 μm are reconstructed respectively[42]; (d) THG nonlinear modulated cyan and blue holograms based on C-shaped Si nanoantennas[43]
    Schematic of meta-holography. (a) Static meta-holography; (b) Multiplexed meta-holography, which means dynamic display can be realized by controlling the fundamental properties of incident light; (c) Active meta-holography, which means metasurface itself can be changed in response to optical, electrical, thermal, or chemical stimuli
    Different methods for wavelength-multiplexed meta-holography to realize color holography. (a) Spatially staggered arrangement[64]; (b) Multilayer design and adjusted GS algorithm[68]; (c) Dispersion phase-based metasurface[70]; (d) Combined with angle multiplexing technology[73]
    Angle multiplexed and polarization multiplexed meta-holography. (a) Angle-multiplexed meta-holography, which can display different images at 0° and 30° incident angles, respectively[77]; (b) Combined with nanoprinting and four different images can be projected[80]; (c) Combine the propagation phase with the geometric phase to realize the multiplexing of LCP and RCP[86]; (d) Simultaneously record a continuous grayscale nanoprinting image in the near field and project two independent holographic images in the far field[87]; (e) Three-dimensional vectorial holography with a large field of view (94°) and high diffraction efficiency (78%) based on machine learning inverse design[92]
    OAM multiplexed, space channel multiplexed and nonreciprocal meta-holography. (a) OAM-multiplexed meta-holography with discrete spatial frequency distribution[98]; (b) Dielectric multi-momentum meta-transformer in the visible[100], scale bar: 20 μm; (c) Space channel multiplexed metasurface, which can realize dynamic holographic video display in a way similar to cinematography[101]; (d) Space channel multiplexed metasurface, which can realize cinematography-inspired dynamic holographic display and display 228 different frames with structured laser beam[102]; (e) Space channel selecting metasurface realized by a template[104]; (f) Nonreciprocal meta-holographic device[108]
    Diffracted light field multiplexed meta-holography. (a) Diffracted light field multiplexed meta-holography, which can realize dynamic display by changing the incident light field with spatial light modulators[110]; (b) Cascaded metasurface, which can display different holographic images in the mood of single-layer or multi-layer[111]; (c) Use the in-plane rotation between two cascaded metasurface to introduce the concept of the rotational multiplexing method and display different images[112]
    Applications based on multiplexed meta-holography. (a) A polarization-multiplexed holographic device for gas sensing by combining liquid crystal materials and the circular polarization of incident light can be switched under different gas concentrations which leads to holographic image switching between two images[117]; (b) Code division multiplexed metasurface[118]; (c) A vectorial holographic device can control the phase information of the holographic image plane to hide or display image information under specific input and output conditions[119]
    Active meta-holography. (a) Switchable spin Hall effect, vortex beam generation and holography based on GST phase transition properties[126]; (b) Dynamic metasurface holography based on Mg hydrogenation/dehydrogenation properties[132]; (c) Dynamic switching display of holographic image based on stretchable PDMS substrate[135]
    Active meta-holography. (a) Switchable meta-holographic device based on environmentally sensitive MIM structures[138], scale bar: 40 μm; (b) Electronically controlled digital metasurface for optical projection display[143]; (c) Refractive index modulation by femtosecond laser pulse reduction of to achieve wide-FOV 3D holograms[148]
    Micro-nano fabrication technologies for optical metasurfaces (a) Electron beam lithography; (b) Focused ion beam; (c) Photolithography; (d) Plasmonic cavity lithography; (e) Nanoimprint lithography; (f) Two-photon polymerization laser direct writing
    • Table 1. Representative works of single-wavelength static holographic display

      View table
      View in Article

      Table 1. Representative works of single-wavelength static holographic display

      工作机理工作模式波长/nm材料效率参考文献
      相位调制反射式630~1050Au-MgF2-Au 80%@825 nm[33]
      振幅调制透射式532Cr47%[39]
      复振幅调制透射式532p-Si40%[26]
      非线性调制透射式1210Au/[52]
    • Table 2. Representative works of color holographic display

      View table
      View in Article

      Table 2. Representative works of color holographic display

      工作机理工作模式效率功能参考文献
      非线性调制透射式/双色全息显示(重建波长645 nm、430 nm)[50]
      波长复用反射式13.2%@633 nm、11.1%@532 nm、8.9%@465 nm三色全息像构成的彩色显示[63]
      透射式18%@633 nm、5.2%@532 nm、3.6%@473 nm;三色全息像构成的彩色显示[64]
      透射式10.3%@633 nm、7.8%@532 nm、6.4%@473 nm;三色全息像构成的彩色显示并与彩色打印技术相结合[75]
      OAM复用透射式/三色全息像构成的彩色显示 (入射波长488 nm、532 nm、633 nm) [100]
    • Table 3. Representative works of dynamic smooth holographic display

      View table
      View in Article

      Table 3. Representative works of dynamic smooth holographic display

      工作机理工作模式波长/nm帧数帧率参考文献
      OAM复用透射式6332N60[99]
      空间复用透射式6332N9523[102]
      衍射光场复用透射式633理论上无限制60[110]
      电调制透射式532;6352;2N/[142]
      反射式6332N~19[143]
    • Table 4. Representative works of other functionalized applications

      View table
      View in Article

      Table 4. Representative works of other functionalized applications

      工作机理工作模式波长/nm材料功能参考文献
      备注:“/”代表参考文献中没有相关数据。
      波长复用透射式473、532、633Si多功能集成[75]
      角度复用反射式915a-Si全息加密、多功能集成[77]
      透射式405Au全息加密、多功能集成[81]
      偏振复用透射式480TiO2全息加密、多功能集成[87]
      透射式633;532a-Si:H;功能性UV光刻胶,包含TiO2纳米粒子 传感[117]
      OAM复用透射式632GaN高信息容量存储、全息加密、多功能集成[98]
      空间复用透射式633a-Si多功能集成[103]
      传输方向复用透射式632.8a-Si:H全息加密、多功能集成[108]
      衍射光场复用透射式740Si全息加密[111]
      相变材料调制透射式800(控制光)、 1550(探测光) GST-Al全息加密[128]
      化学反应调制反射式633Mg/Ti/Pd、Au、Mg/Ti/Pd/Cr传感、全息加密[132]
      反射式633Mg/Ti/Pd-HSQ-SiO2-Ag 传感、多功能集成[134]
      机械调制透射式632.8Au-PDMS传感[135]
      介质环境调制反射式800;710、890Au-SiO2-Au 传感[138]
      热调制透射式633聚烯烃传感、全息加密[149]
    Tools

    Get Citation

    Copy Citation Text

    Ke Xu, Xinger Wang, Xuhao Fan, Yuncheng Liu, Xuan Yu, Hui Gao, Wei Xiong. Meta-holography: from concept to realization[J]. Opto-Electronic Engineering, 2022, 49(10): 220183

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jul. 27, 2022

    Accepted: --

    Published Online: Dec. 12, 2022

    The Author Email:

    DOI:10.12086/oee.2022.220183

    Topics