Journal of the Chinese Ceramic Society, Volume. 50, Issue 6, 1592(2022)
Research Progress on Magnesium Phosphate Cement
[1] [1] WAGH A S. Chemically Bonded Phosphate Ceramics: Twenty First Century Materials with Diverse Applications[M]. 2nd Ed. Oxford: Elsevier, 2016.
[2] [2] PROSEN E M. Dental investment or refractory material[P]. US Patent, 2152152, 1939-3-28.
[3] [3] STIERLI R F, TARVER C C, GAIDIS J M. Magnesium phosphate concrete compositions[P]. US Patent, 3960580, 1976-6-1.
[4] [4] NEIMAN R, SARMA A C. Setting and thermal reactions of phosphate investments[J]. Dent Res, 1980, 59(9): 1478-1485.
[5] [5] ABDELRAZIG B E I, SHARP J H, EL-JAZAIRI B. The chemical composition of mortars made from magnesia-phosphate cement[J]. Cem Concr Res, 1988, 18(3): 415-425.
[6] [6] EL-JAZAIRI B. The properties of hardened MPC mortar and concrete relevant to the requirements of rapid repair of concrete pavements[J]. Concrete, 1987, 21: 25-31.
[7] [7] POPOVICS S, RAJENDRAN N, PENKO M. Rapid hardening cements for repair of concrete[J]. ACI Mater J, 1987, 84: 64?73.
[8] [8] WAGH A S, JEONG S Y, SINGH D. High-strength phosphate ceramic (cement) using industrial byproduct ash and slag [C]//1st International Engineering Foundation Conference on High Strength Concrete, Kailua-Kona, USA, 1997: 542-553.
[9] [9] WAGH A S, SINGH D, JEONG S Y. Method of waste stabilization via chemically bonded phosphate ceramics, structural materials incorporating potassium phosphate ceramics[P]. WIPO Patent, 034848, 1997-9-25.
[11] [11] YANG Q B, WU X L. Factors influencing properties of phosphate cement-based binder for rapid repair of concrete[J]. Cem Concr Res, 1999, 29(3): 389-396.
[13] [13] LI Y, SUN J, CHEN B. Experimental study of magnesia and M/P ratio influencing properties of magnesium phosphate cement[J]. Constr Build Mater, 2014, 65: 177183.
[14] [14] HOU D S, YAN H D, ZHANG J R, et al. Experimental and computational investigation of magnesium phosphate cement mortar[J]. Constr Build Mater, 2016, 112: 331-342.
[17] [17] TAN Y S, YU H F, LI Y, et al. The effect of slag on the properties of magnesium potassium phosphate cement[J]. Constr Build Mater, 2016, 126: 313-320.
[18] [18] JIANG Z W, QIAN C, CHEN Q. Experimental investigation on the volume stability of magnesium phosphate cement with different types of mineral admixtures[J]. Constr Build Mater, 2017, 157: 10-17.
[19] [19] VIANI A, ZBIRI M, BORDALLO H N, et al. Investigation of the setting reaction in magnesium phosphate ceramics with quasielastic neutron scattering[J]. J Phys Chem C, 2017, 121(21): 11355?11367.
[20] [20] VIANI A, SOTIRIADIS K, LANZAFAME G, et al. 3D microstructure of magnesium potassium phosphate ceramics from X-ray tomography: new insights into the reaction mechanisms[J]. J Mater Sci, 2019, 54(5): 3748-3760.
[21] [21] ZHANG T, CHEN H S, LI X Y, et al. Hydration behavior of magnesium potassium phosphate cement and stability analysis of its hydration products through thermodynamic modeling[J]. Cem Concr Res, 2017, 98: 101-110.
[22] [22] YOU C, QIAN J S, QIN J H, et al. Effect of early hydration temperature on hydration product and strength development of magnesium phosphate cement (MPC)[J]. Cem Concr Res, 2015, 78: 179-189.
[23] [23] QIAO Fei. Reaction mechanisms of magnesium potassium phosphate cement and its application[D]. Hong Kong: The Hong Kong University of Science and Technology, 2010.
[24] [24] WAGH A S. Recent Progress in Chemically Bonded Phosphate Ceramics[J]. ISRN Ceram, 2013, 2013: 983731.
[27] [27] KOGBARA R B, AL-TABBAA A, LYENGAR S R. Utilisation of magnesium phosphate cements to facilitate biodegradation within a stabilised/solidified contaminated soil[J]. Water Air Soil Pollut, 2011, 216: 411-427.
[28] [28] WALLING S A, PROVIS J L. Magnesia-based cements: A journey of 150 years, and cements for the future?[J]. Chem Rev, 2016, 116(7): 4170-4204.
[29] [29] SOUDEE E, PERA J. Influence of magnesia surface on the setting time of magnesia-phosphate cement[J]. Cem Concr Res, 2002, 32(1): 153-157.
[30] [30] VIANI A, PEREZ-ESTEBANEZ M, POLLASTRI S, et al. In situ synchrotron powder diffraction study of the setting reaction kinetics of magnesium-potassium phosphate cements[J]. Cem Concr Res, 2016, 79: 344-352.
[31] [31] ISMAILOV A, MERILAITA N, SOLISMAA S, et al. Utilizing mixed-mineralogy ferroan magnesite tailings as the source of magnesium oxide in magnesium potassium phosphate cement[J]. Constr Build Mater, 2020, 231: 117098.
[32] [32] YU J C, QIAN J S, WANG F, et al. Preparation and properties of a magnesium phosphate cement with dolomite[J]. Cem Concr Res, 2020, 138: 106235.
[33] [33] TAN Y S, YU H F, LI Y, et al. Magnesium potassium phosphate cement prepared by the byproduct of magnesium oxide after producing Li2CO3 from salt lakes[J]. Ceram Int, 2014, 40(8): 13543-13551.
[36] [36] SHAND M A, AL-TABBAA A, QIAN J S, et al. Magnesia Cements - From Formulation to Application[M]. Oxford: Elsevier, 2020.
[38] [38] FAN S J, CHEN B. Experimental study of phosphate salts influencing properties of magnesium phosphate cement[J]. Constr Build Mater, 2014, 65: 480-486.
[39] [39] MESTRES G, GINEBRA M P. Novel magnesium phosphate cements with high early strength and antibacterial properties[J]. Acta Biomater, 2011, 7(4): 1853-1861.
[40] [40] HALL D A, STEVENS R, EI-JAZAIRI B. The effect of retarders on the microstructure and mechanical properties of magnesia-phosphate cement mortar[J]. Cem Concr Res, 2001, 31(3): 455-465.
[42] [42] LI J, JI Y S, HUANG G D, et al. Retardation and reaction mechanisms of magnesium phosphate cement mixed with glacial acetic acid[J]. RSC Adv, 2017, 7(74): 46852-46857.
[43] [43] YANG J M, LU J W, WU Q S, et al. Influence of steel slag powders on the properties of MKPC paste[J]. Constr Build Mater, 2018, 159: 137-146.
[44] [44] GAO M, CHEN B, LANG L, et al. Influence of silica fume on mechanical properties and water resistance of magnesium-ammonium phosphate cement[J]. J Mater Civ Eng, 2020, 32(3): 04019368.
[45] [45] CHONG L L, SHI C J, YANG J M, et al. Effect of limestone powder on the water stability of magnesium phosphate cement-based materials[J]. Constr Build Mater, 2017, 148: 590-598.
[48] [48] HAN W W, CHEN H S, LI X Y, et al. Thermodynamic modeling of magnesium ammonium phosphate cement and stability of its hydration products[J]. Cem Concr Res, 2020, 138: 106223.
[49] [49] XU B W, WINNEFELD F, KAUFMANN J, et al. Influence of magnesium-to-phosphate ratio and water-to-cement ratio on hydration and properties of magnesium potassium phosphate cements[J]. Cem Concr Res, 2019, 123: 105781.
[50] [50] LEE K H, YOON H S, YANG K H. Tests on magnesium potassium phosphate composite mortars with different water-to-binder ratios and molar ratios of magnesium-to phosphate[J]. Constr Build Mater, 2017, 146: 303-311.
[51] [51] XU B W, MA H Y, LI Z J. Influence of magnesia-to-phosphate molar ratio on microstructures, mechanical properties and thermal conductivity of magnesium potassium phosphate cement paste with large water-to-solid ratio[J]. Cem Concr Res, 2015, 68: 1-9.
[52] [52] MA H Y, XU B W, LIU J, et al. Effects of water content, magnesia-to-phosphate molar ratio and age on pore structure, strength and permeability of magnesium potassium phosphate cement paste[J]. Mater Des, 2014, 64: 497-502.
[53] [53] CHAU C K, QIAO F, LI Z J. Microstructure of magnesium potassium phosphate cement[J]. Constr Build Mater, 2011, 25(6): 2911-2917.
[54] [54] LE ROUZIC M, CHAUSSADENT T, SAILLIO M. On the influence of Mg/P ratio on the properties and durability of magnesium potassium phosphate cement pastes[J]. Cem Concr Res, 2017, 96: 27-41.
[55] [55] QIAO F, CHAU C K, LI Z J. Property evaluation of magnesium phosphate cement mortar as patch repair material[J]. Constr Build Mater, 2010, 24(5): 695-700.
[56] [56] MA H Y, XU B W. Potential to design magnesium potassium phosphate cement paste based on an optimal magnesia-to-phosphate ratio[J]. Mater Des, 2017, 118: 81-88.
[57] [57] QIN J H, QIAN J S, DAI X B, et al. Effect of water content on microstructure and properties of magnesium potassium phosphate cement pastes with different magnesia-to-phosphate ratios[J]. J Am Ceram Soc, 2021, 104(6): 2799-2819.
[58] [58] MA C, WANG F, ZHOU H J, et al. Effect of early-hydration behavior on rheological properties of borax-admixed magnesium phosphate cement[J]. Constr Build Mater, 2021, 283: 122701.
[59] [59] XU B W, MA H Y, SHAO H Y, et al. Influence of fly ash on compressive strength and micro-characteristics of magnesium potassium phosphate cement mortars[J]. Cem Concr Res, 2017, 99: 86-94.
[60] [60] MO L W, LV M, DENG M, et al. Influence of fly ash and metakaolin on the microstructure and compressive strength of magnesium potassium phosphate cement paste[J]. Cem Concr Res 2018, 111: 116-129.
[62] [62] SOUD?E E, P?RA J. Mechanism of setting reaction in magnesia-phosphate cements[J]. Cem Concr Res, 2000, 30(2): 315-321.
[63] [63] WANG D Q, YUE Y F, MII T W, et al. Effect of magnesia-to- phosphate ratio on the passivation of mild steel in magnesium potassium phosphate cement[J]. Corros Sci, 2020, 174: 108848.
[64] [64] GARDNER L J, CORKHILL C L, WALLING S A, et al. Early age hydration and application of blended magnesium potassium phosphate cements for reduced corrosion of reactive metals[J]. Cem Concr Res, 2021, 143: 106375.
[65] [65] XU B W, LOTHENBACH B, LEEMANN A, et al. Reaction mechanism of magnesium potassium phosphate cement with high magnesium-to-phosphate ratio[J]. Cem Concr Res, 2018, 108: 140-151.
[66] [66] LAHALLE H, COUMES C C D, MESBAH A, et al. Investigation of magnesium phosphate cement hydration in diluted suspension and its retardation by boric acid[J]. Cem Concr Res, 2016, 87: 77-86.
[69] [69] QIAO F, CHAU C K, LI Z J. Calorimetric study of magnesium potassium phosphate cement[J]. Mater Struct, 2012, 45(3): 447-456.
[70] [70] VIANI A, MACOVA P. Polyamorphism and frustrated crystallization in the acid-base reaction of magnesium potassium phosphate cements[J]. Cryst Eng Comm, 2018, 20(32): 4600-4613.
[71] [71] LE ROUZIC M, CHAUSSADENT T, PLATRET G, et al. Mechanisms of k-struvite formation in magnesium phosphate cements[J]. Cem Concr Res, 2017, 91: 117-122.
[72] [72] HAN W W, CHEN H S, LI X Y, et al. Thermodynamic modeling of magnesium ammonium phosphate cement and stability of its hydration products[J]. Cem Concr Res, 2020, 138: 106223.
[73] [73] HALL D A, STEVENS R, EL JAZAIRI B. Effect of water content on the structure and mechanical properties of magnesia-phosphate Cement Mortar[J]. J Am Ceram Soc, 1988, 81(6): 1550-1556.
[74] [74] GARDNER L J, BERNAL S A, WALLING S A, et al. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag[J]. Cem Concr Res, 2015, 74: 78-87.
[75] [75] LI Y, CHEN B. Factors that affect the properties of magnesium phosphate cement[J]. Constr Build Mater, 2013, 47: 977-983.
[80] [80] WANG H T, XUE M , CAO J H. Research on the strength properties of the magnesium phosphate cement (MPC) under the sub-zero temperature environment[J]. Adv Mater Res, 2011, 150-151: 1517-1520.
[81] [81] JIA X W, LI J M, WANG P, et al. Preparation and mechanical properties of magnesium phosphate cement for rapid construction repair in ice and snow[J]. Constr Build Mater, 2019, 229: 116927.
[84] [84] QIN J H, QIAN J S, YOU C, et al. Bond behavior and interfacial micro-characteristics of magnesium phosphate cement onto old concrete substrate[J]. Constr Build Mater, 2018, 167: 166-176.
[85] [85] LI Y, BAI W L, SHI T F. A study of the bonding performance of magnesium phosphate cement on mortar and concrete[J]. Constr Build Mater, 2017, 142: 459-468.
[86] [86] QIAN J S, YOU C, WANG Q Z, et al. A method for assessing bond performance of cement-based repair materials[J]. Constr Build Mater, 2014, 68: 307-313.
[87] [87] FENG H, SHEIKH M N, HADI M N S, et al. Interface bond performance of steel fibre embedded in magnesium phosphate cementitious composite[J]. Constr Build Mater, 2018, 185: 648-660.
[89] [89] MESTRES G, ABDOLHOSSEINI M, BOWLES W, et al. Antimicrobial properties and dentin bonding strength of magnesium phosphate cements[J]. Acta Biomater, 2013, 9(9): 8384-8393.
[90] [90] YANG J M, WANG L M, JIN C, et al. Effect of fly ash on the corrosion resistance of magnesium potassium phosphate cement paste in sulfate solution[J]. Constr Build Mater, 2020, 237: 117639.
[91] [91] YANG J M, ZHANG J, ZHENG S C. Experimental research on seawater erosion resistance of magnesium potassium phosphate cement pastes[J]. Constr Build Mater, 2018, 183: 534-543.
[92] [92] LI J, JI Y S, ZHANG L L, et al. Resistance to sulfate attack of magnesium phosphate cement-coated concrete[J]. Constr Build Mater, 2019, 195: 156-164.
[93] [93] CHONG L L, YANG J M, XU Z Z, et al. Freezing and thawing resistance of MKPC paste under different corrosion solutions[J]. Constr Build Mater, 2019, 212: 663-674.
[95] [95] YANG Q, ZHU B, WU X. Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete[J]. Mater Struct, 2000, 33: 229-234.
[97] [97] TANG H, QIAN J S, JI Z W, et al. The protective effect of magnesium phosphate cement on steel corrosion[J]. Constr Build Mater, 2020, 255: 119422.
[98] [98] YIN S Y, YANG H Y, DONG Y H, et al. Environmentally favorable magnesium phosphate anti corrosive coating on carbon steel and protective mechanisms[J]. Sci Rep, 2021, (11): 197.
[99] [99] CAO X, MA R, ZHANG Q S, et al. The factors influencing sludge incineration residue (SIR)-based magnesium potassium phosphate cement and the solidification/stabilization characteristics and mechanisms of heavy metals[J]. Chemosphere, 2020, 261: 127789.
[101] [101] GARDNER L J, CORKHILL C L, WALLING S A, et al. Early age hydration and application of blended magnesium potassium phosphate cements for reduced corrosion of reactive metals[J]. Cem Concr Res, 2021, 143: 106375.
[103] [103] YANG H L, FU M J, WU B B, et al. Effect of Fe2O3 on the immobilization of high-level waste with magnesium potassium phosphate ceramic[J]. Sci Technol Nucl Ins, 2019, 2019: 4936379.
[104] [104] YU L, XIA K Z, GONG C T, et al. An injectable bioactive magnesium phosphate cement incorporating carboxymethyl chitosan for bone regeneration[J]. Int J Biol Macromol, 2020, 160: 101-111.
[105] [105] YANG G Y, LIU J L, LI F, et al. Bioactive calcium sulfate/magnesium phosphate cement for bone substitute applications[J]. Mater Sci Eng C, 2014, 35: 70-76.
[108] [108] SCHENDEL S A, PEAUROI J. Magnesium-based one cement and bone void filler: preliminary experimental studies[J]. J Craniofac Surg, 2009, 20(2): 461-464.
[109] [109] KLAMMERT U, VORNDRAN E, REUTHER T, et al. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing[J]. J Mater Sci Mater Med, 2010, 21(11): 2947-2953.
[110] [110] VINOKUROV S E, KULYAKO Y M, SLYUNTCHEV O M, et al. Low-temperature immobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices[J]. J Nucl Mater, 2009, 385: 189-192.
Get Citation
Copy Citation Text
QIN Jihui, QIAN Jueshi, SONG Qing, REN Wenxiao, JIA Xingwen. Research Progress on Magnesium Phosphate Cement[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1592
Category:
Received: Oct. 10, 2021
Accepted: --
Published Online: Dec. 6, 2022
The Author Email: Jihui QIN (qinjihui@cqu.edu.cn)
CSTR:32186.14.