Journal of Innovative Optical Health Sciences, Volume. 11, Issue 3, 1840001(2018)

Mapping the small-world properties of brain networks in Chinese to English simultaneous interpreting by using functional near-infrared spectroscopy

[in Chinese]... [in Chinese], [in Chinese], [in Chinese], [in Chinese] and [in Chinese]* |Show fewer author(s)
References(37)

[1] [1] A. G. Hervais-Adelman, B.Moser-Mercer, N. Golestani, “Executive control of language in the bilingual brain: Integrating the evidence from neuroimaging to neuropsychology," Front. Psychol. 2, 234 (2011).

[2] [2] M. Becker, T. Schubert, T. Strobach, J. Gallinat, S. Kühn, “Simultaneous interpreters vs. professional multilingual controls: Group differences in cognitive control as well as brain structure and function," NeuroImage 134, 250-260 (2016).

[3] [3] J. O. Rinne, J. Tommola, M. Laine, B. J. Krause, D. Schmidt, V. Kaasinen, M. Teras, H. Sipila, M. Sunnari, “The translating brain: Cerebral activation patterns during simultaneous interpreting," Neurosci. Lett. 294(2), 85-88 (2000).

[4] [4] D. Klein, B. Milner, R. J. Zatorre, E. Meyer, A. C. Evans, “The neural substrates underlying word generation: A bilingual functional-imaging study," Proc. Natl. Acad. Sci. USA 92(7), 2899-2903 (1995).

[5] [5] V. Quaresima, M. Ferrari, M. C. van der Sluijs, J. Menssen, W. N. Colier, “Lateral frontal cortex oxygenation changes during translation and language switching revealed by non-invasive nearinfrared multi-point measurements," Brain Res. Bull. 59(3), 235-243 (2002).

[6] [6] L. A. Petitto, M. Berens, I. Kovelman, M. H. Dubins, K. Jasinska, M. Shalinsky, “The “Perceptual Wedge Hypothesis" as the basis for bilingual babies' phonetic processing advantage: New insights fromfNIRS brain imaging," Brain Lang. 121(2), 130-143 (2012).

[7] [7] M. Rubinov, S. A. Knock, C. J. Stam, S. Micheloyannis, A. W. Harris, L. M. Williams, M. Leanne, M. Breakspear, “Small-world properties of nonlinear brain activity in schizophrenia," Hum. Brain Mapp. 30(2), 403-416 (2009).

[8] [8] T. Uehara, T. Yamasaki, T. Okamoto, T. Koike, S. Kan, S. Miyauchi, J. Kira, S. Tobimatsu, “E±ciency of a “small-world" brain network depends on consciousness level: A resting-state fMRI study," Cereb. Cortex 24(6), 1529-1539 (2013).

[9] [9] S. Achard, E. Bullmore, “E±ciency and cost of economical brain functional networks," PLoS Comput. Biol. 3(2), 17 (2017).

[10] [10] J. R. Ding, W. Liao, Z. Zhang, D. Mantini, Q. Xu, G. R. Wu, G. Lu, H. Chen, “Topological fractionation of resting-state networks," Plos One 6(10), e26596(2011).

[11] [11] L. Pessoa, “Understanding brain networks and brain organization," Phys. Life Rev. 11(3), 400-435 (2014).

[12] [12] X. Liu, K. Hong, “Detection of primary RGB colors projected on a screen using fNIRS," J. Innov. Opt. Health Sci. 10(3), 1750006 (2017).

[13] [13] T. Li, Y. Li, Y. Sun, M. Duan, L. Peng, “Effect of head model on Monte Carlo modeling of spatial sensitivity distribution for functional near-infrared spectroscopy," J. Innov. Opt. Health Sci. 8(5), 1550024 (2015).

[14] [14] Z. Deng, Q. Huang, J. Huang, W. Zhang, C. Qi, X. Xu, “Association between central obesity and executive function as assessed by stroop task performance: A functional near-infrared spectroscopy study," J. Innov. Opt. Health Sci. 11(1), 1750010 (2018).

[15] [15] A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, I. Dan, “Spatial registration of multichannel multisubject fNIRS data to MNI space without MRI," NeuroImage 27(4), 842-851 (2005).

[16] [16] T. J. Huppert, S. G. Diamond, M. A. Franceschini, D. A. Boas, “HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain," Appl. Opt. 48(10), 280-298 (2009).

[17] [17] M. Cope, D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination," Med. Biol. Eng. Comput. 26(3), 289-294 (1988).

[18] [18] J. Zhang, X. Lin, G. Fu, L. Sai, H. Chen, J. Yang, M. Wang, Q. Liu, G. Yang, J. Zhang, “Mapping the small-world properties of brain networks in deception with functional near-infrared spectroscopy," Sci. Rep. 6, 25297 (2016).

[19] [19] K. J. Friston, “Functional and effective connectivity in neuroimaging: A synthesis," Hum. Brain Mapp. 2, 56-78 (1994).

[20] [20] B. Biswal, Y. F. Zerrin, V. M. Haughton, J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar mri," Magn. Reson. Med. 34(4), 537-541 (1995).

[21] [21] W. Liao, Z. Zhang, Z. Pan, D. Mantini, J. Ding, X. Duan, C. Luo, G. Lu, H. Chen, “Altered functional connectivity and small-world in mesial temporal lobe epilepsy," PloS One 5(1), 8525 (2010).

[22] [22] M. Xia, J. Wang, Y. He, “BrainNet Viewer: A network visualization tool for human brain connectomics," PloS One 8(7), 68910 (2013).

[23] [23] D. J. Watts, S. H. Strogatz, “Collective dynamics of `small-world' networks," Nature 393(6684), 440 (1998).

[24] [24] M. Rubinov, O. Sporns, “Complex network measures of brain connectivity: Uses and interpretations," NeuroImage 52(3), 1059-1069 (2010).

[25] [25] M. D. Humphries, K. Gurney, “Network ‘smallworld-ness’: A quantitative method for determining canonical network equivalence," PloS One 3(4), 0002051 (2008).

[26] [26] S. Maslov, K. Sneppen, “Specificity and stability in topology of protein networks," Science 296(5569), 910-913 (2002).

[27] [27] S. Hayasaka, P. J. Laurienti, “Comparison of characteristics between region- and voxel-based network analyses in resting-state fMRI data," NeuroImage 50(2), 499-508 (2010).

[28] [28] R. Milo, O. S. Shen, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon. “Network motifs: Simple building blocks of complex networks," Science 298(5594), 824-827 (2002).

[29] [29] M. P. van den Heuvel, C. J. Stam, M. Boersma, H. H. Pol, “Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain," NeuroImage 43(3), 528-539 (2008).

[30] [30] D. S. Bassett, E. Bullmore, “Small-world brain networks," Neuroscientist 12(6), 512-523 (2006).

[31] [31] M. D. Humphries, K. Gurney, T. J. Prescott, “The brainstem reticular formation is a small-world, not scale-free, network," Proc. R. Soc. Lond. B Biol. Sci. 273(1585), 503-511 (2006).

[32] [32] J. Zhang, J. Wang, Q. Wu, W. Kuang, X. Huang, Y. He, Q. Gong, “Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder," Biol. Psychiatry 70(4), 334-342 (2011).

[33] [33] B. C. van Wijk, C. J. Stam, A. Daffertshofer, “Comparing brain networks of different size and connectivity density using graph theory," PLoS One 5, e13701 (2010).

[34] [34] A. Fornito, A. Zalesky, M. Breakspear, “Graph analysis of the human connectome: Promise, progress, and pitfalls," NeuroImage 80, 426-444 (2013).

[35] [35] T. Fekete, F. D. Beacher, J. Cha, D. Rubin, L. R. Mujica-Parodi, “Small-world network properties in prefrontal cortex correlate with predictors of psychopathology risk in young children: A NIRS study," NeuroImage 85, 345-353 (2014).

[36] [36] A.M. De Groot, Bilingual Cognition: An Introduction, Psychology Press, UK (2011).

[37] [37] Y. He, “A fresh cognitive perspective to horizontal translation," J. Transl. Stud. 10(1), 77-90 (2007).

Tools

Get Citation

Copy Citation Text

[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Mapping the small-world properties of brain networks in Chinese to English simultaneous interpreting by using functional near-infrared spectroscopy[J]. Journal of Innovative Optical Health Sciences, 2018, 11(3): 1840001

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Received: Jan. 8, 2018

Accepted: Mar. 25, 2018

Published Online: Oct. 6, 2018

The Author Email: (zhenyuan@umac.mo)

DOI:10.1142/s1793545818400011

Topics