Acta Physica Sinica, Volume. 69, Issue 2, 028401-1(2020)

A class of approximate computation method for antenna directivity

Jun-Qun Liu*
Figures & Tables(8)
The solution coordinate for the pattern of planar array antennas.矩形阵列天线方向图函数求解坐标系
  • Table 1. Comparison and evaluation of four computation methods of directivity in uniform distribution of electromagnetic excitation.

    View table
    View in Article

    Table 1. Comparison and evaluation of four computation methods of directivity in uniform distribution of electromagnetic excitation.

    方法方向系数计算值/dB误差分析、估计计算时间/s方法特点和局限
    (20)式理论真值Dpa40.95120; 应用方法4)对被测天线阵列本身进行数值积分, 结果为40.9512, INVuv误差界1.247607 × 10–8; 积分真值区间: [40.95119, 40.95129], 方法4)计算结果与被测天线理论真值近乎完全吻合, 就积分本身结果而言, 方法4)可作为积分真值参考基准 21.51解析解, 公式应用范围 受限
    1) PNF41.13比真值偏大约0.18 dB1.11速度最快
    2) 本文算法基础积分求和估算40.9522比真值偏大约0.001 dB20.56速度较快, 计算时间依赖于FFT点数和测试数据矩阵大小
    3) 二维插值估计被积函数40.9522比真值偏大约0.001 dB, INVuv误差界1.247085 × 10–8, 积分真值区间: [40.9521, 40.9523] 211.78速度较慢, 计算时间依赖于FFT点数和测试数据矩阵大小
    4) 累加求和被积函数 解析值 40.95218比真值偏大约0.001 dB, quad2d()算法本身误差, 不存在被积函数值误差, INVuv误差界9.120334 × 10–9, 积分真值区间: [40.952139, 40.952217] 1895.52速度最慢, 计算时间依赖于近场测试数据矩阵大小, 本例为104 × 156, 最佳逼近积分真值
  • Table 2. Comparison and evaluation of four computation methods of directivity in uniform amplitude & linear scanning phase distribution of electromagnetic excitation.

    View table
    View in Article

    Table 2. Comparison and evaluation of four computation methods of directivity in uniform amplitude & linear scanning phase distribution of electromagnetic excitation.

    方法方向系数计算值/dB误差分析、估计计算时间/s方法特点和局限
    (20)式理论真值Dpa38.94730; 应用方法(4)对被测天线阵列本身进行数值积分, 结果为38.9474, INVuv误差界2.257101 × 10–8; 积分真值区间: [38.94733, 38.94746], 方法4)计算结果与被测天线理论真值近乎完全符合, 就积分本身结果而言, 方法4)可作为积分真值参考基准 20.92解析解, 公式应用范围 受限
    1) PNF39.33比真值偏大约0.38 dB1.12速度最快
    2) 本文算法基础积分求和估算39.2175比真值偏大约0.27 dB20.92速度较快, 计算时间依赖于FFT点数和测试数据矩阵大小
    3) 二维插值估计被积函数39.2142比真值偏大约0.27 dB, INVuv误差界1.248032 × 10–7, 积分真值区间: [39.21385, 39.21457] 201.61速度较慢, 计算时间依赖于FFT点数和测试数据矩阵大小
    4) 累加求和被积函数解析值39.2023比真值偏大约0.25 dB, quad2d()算法本身误差, INVuv误差界2. 873319 × 10–8, 积分真值区间: [39.20225, 39.20241] 1276.35速度最慢, 计算时间依赖于近场测试数据矩阵大小, 本例为104 × 156, 最佳逼近积分真值
  • Table 3. Comparison and evaluation of four computation methods of directivity in Taylor distribution of electromagnetic excitation.

    View table
    View in Article

    Table 3. Comparison and evaluation of four computation methods of directivity in Taylor distribution of electromagnetic excitation.

    方法方向系数计算值/dB误差分析、估计计算时间/s方法特点和局限
    (20)式理论真值Dpa37.80930; 应用方法4)对被测天线阵列本身进行数值积分, 结果为37.809329, INVuv误差界6.831371 × 10–10; 积分真值区间: [37.809327, 37.809330], 方法4)计算结果与被测天线理论真值近乎完全符合, 就积分本身结果而言, 方法4)可作为积分真值参考基准 21.47解析解, 公式应用范围 受限
    1) PNF38.40比真值偏大约0.59 dB1.04速度最快
    2) 本文算法基础积分求和估算38.1953比真值偏大约0.39 dB20.65速度较快, 计算时间依赖于FFT点数和测试数据矩阵大小
    3) 二维插值估计被积函数38.2152比真值偏大约0.4 dB, INVuv误差界1.249154 × 10–8, 真值区间: [38.21517, 38.21523] 189.59速度较慢, 计算时间依赖于FFT点数和测试数据矩阵大小
    4) 累加求和被积函数解析值38.190513比真值偏大约0.38 dB, quad2d()算法本身误差, INVuv误差界1.248422 × 10–9, 真值区间: [38.19051, 38.190516] 1465.8速度最慢, 计算时间依赖于近场测试数据矩阵大小, 本例为104 × 156, 最佳逼近积分真值
  • Table 4. Comparison and evaluation of four computation methods of directivity in Taylor distribution of electromagnetic excitation with raised precision of FFT algorithm.

    View table
    View in Article

    Table 4. Comparison and evaluation of four computation methods of directivity in Taylor distribution of electromagnetic excitation with raised precision of FFT algorithm.

    方法方向系数计算值/dB误差分析、估计计算时间/s方法特点和局限
    (20)式理论真值Dpa37.80930; 应用方法4)对被测天线阵列本身进行数值积分, 结果为37.809329, INVuv误差界6.831371 × 10–10; 积分真值区间: [37.809327, 37.809330], 方法4)计算结果与被测天线理论真值近乎完全符合, 就积分本身结果而言, 方法4)可作为积分真值参考基准. 21.18解析解, 公式应用范围 受限
    1) PNF38.36比真值偏大0.56 dB, 结果因FFT点数变化与表3相比略有变化 1.09速度最快, 本例FFT点数为211 × 211, 其他算例FFT点数都为210 × 210
    2) 本文算法基础积分求和估算38.1533比真值偏大0.34 dB82.18计算时间加长, 计算时间依赖于FFT点数和测试数据矩阵大小
    3) 二维插值估计被积函数38.1535比真值偏大0.34 dB, INVuv误差界1.805049 × 10–8, 真值区间: [38.153468, 38.153549] 900.46计算时间长, 计算时间依赖于FFT点数和测试数据矩阵大小, 实用性减弱
    4) 累加求和被积函数解析值38.13822比真值偏大0.33 dB, quad2d()算法本身误差, INVuv误差界1.247355 × 10–9, 真值区间: [38.138217, 38.138222], 结果因FFT点数变化造成最大值略有变化, 最终结果与表3相比略有变化 1468.83速度较慢, 计算时间依赖于近场测试数据矩阵大小, 本例为104 × 156, 最佳逼近积分真值
  • Table 5. Comparison and evaluation of four computation methods of directivity in Taylor distribution of electromagnetic excitation with uniform random errors for amplitude & phase.

    View table
    View in Article

    Table 5. Comparison and evaluation of four computation methods of directivity in Taylor distribution of electromagnetic excitation with uniform random errors for amplitude & phase.

    方法方向系数计算值/dB误差分析、估计计算时间/s方法特点和局限
    (21)式理论真值Dpa13.36040; 应用方法4)对被测天线阵列本身进行数值积分, 结果为13.3604, INVuv误差界3.473624 × 10–5; 积分真值区间: [13.3602, 13.3607], 方法4)计算结果与被测天线理论真值近乎完全符合, 就积分本身结果而言, 方法4)可作为积分真值参考基准. 25.09解析解, 公式应用范围 受限
    1) PNF13.63比真值大约0.27 dB1.03速度最快
    2) 本文算法基础积分求和估算13.6866比真值偏大约0.33 dB20.25速度较快, 计算时间依赖于FFT点数和测试数据矩阵大小
    3) 二维插值估计被积函数13.6806比真值偏大约0.32 dB, INVuv误差界7.892290 × 10–4, 真值区间: [13.6742, 13.6870] 279.98速度较慢, 计算时间依赖于FFT点数和测试数据矩阵大小
    4) 累加求和被积函数解析值13.6580比真值偏大约0.30 dB, quad2d()算法本身误差, INVuv误差界1. 382844 × 10–4, 真值区间: [13.6569, 13.6592] 1259.79速度最慢, 计算时间依赖于近场测试数据矩阵大小, 本例为104 × 156, 最佳逼近积分真值
  • Table 6. Comparison and evaluation of four computation methods of directivity in Taylor distribution of electromagnetic excitation with normal random errors for amplitude & phase.

    View table
    View in Article

    Table 6. Comparison and evaluation of four computation methods of directivity in Taylor distribution of electromagnetic excitation with normal random errors for amplitude & phase.

    方法方向系数计算值/dB误差分析、估计计算时间/s方法特点和局限
    (21)式理论真值Dpa12.62060; 应用方法4)对被测天线阵列本身进行数值积分, 结果为12.6213, INVuv误差界1.249209 × 10–4; 积分真值区间: [12.6205, 12.6220], 方法4)计算结果与被测天线理论真值近乎完全符合, 就积分本身结果而言, 方法4)可作为积分真值参考基准 24.84解析解, 公式应用范围 受限
    1) PNF12.90比真值偏大约0.28 dB1速度最快
    2) 本文算法基础积分求和估算13.0038比真值偏大约0.38 dB20.40速度较快, 计算时间依赖于FFT点数和测试数据矩阵大小
    3) 二维插值估计被积函数13.0030比真值偏大约0.38 dB, INVuv误差界1.249323 × 10–3, 真值区间: [12.9943, 13.0116] 297.41速度较慢, 计算时间依赖于FFT点数和测试数据矩阵大小
    4) 累加求和被积函数解析值12.9737比真值偏大约0.35 dB, quad2d()算法本身误差, INVuv误差界2.116856 × 10–4, 真值区间: [12.9722, 12.9751] 1561.10速度最慢, 计算时间依赖于近场测试数据矩阵大小, 本例为104 × 156, 最佳逼近积分真值
  • Table 7. Comparison and evaluation of four computation methods of directivity in uniform distribution of electromagnetic excitation with normal random errors for amplitude & phase.

    View table
    View in Article

    Table 7. Comparison and evaluation of four computation methods of directivity in uniform distribution of electromagnetic excitation with normal random errors for amplitude & phase.

    方法方向系数计算值/dB误差分析、估计计算时间/s方法特点和局限
    (21)式理论真值Dpa13.52840; 应用方法4)对被测天线阵列本身进行数值积分, 结果为13.5299, INVuv误差界1.248662 × 10–4; 积分真值区间: [13.52897, 13.53091], 方法4)计算结果与被测天线理论真值接近完全符合, 就积分本身结果而言, 方法4)可作为积分真值参考基准. 24.84解析解, 公式应用范围 受限
    1) PNF13.73比真值大约0.2 dB1.03速度最快
    2) 本文算法基础积分求和估算13.8459比真值偏大约0.33 dB20.34速度较快, 计算时间依赖于FFT点数和测试数据矩阵大小
    3) 二维插值估计被积函数13.8598比真值偏大约0.33 dB, INVuv误差界1.249746 × 10–3, 真值区间: [13.8493, 13.8703] 310.81速度较慢, 计算时间依赖于FFT点数和测试数据矩阵大小
    4) 累加求和被积函数解析值13.8184比真值偏大约0.29 dB, quad2d()算法本身误差, INVuv误差界3.546120 × 10–4, 真值区间: [13.8154, 13.8213] 1611.23速度最慢, 计算时间依赖于近场测试数据矩阵大小, 本例为104 × 156, 最佳逼近积分真值
Tools

Get Citation

Copy Citation Text

Jun-Qun Liu. A class of approximate computation method for antenna directivity[J]. Acta Physica Sinica, 2020, 69(2): 028401-1

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Aug. 21, 2019

Accepted: --

Published Online: Nov. 9, 2020

The Author Email:

DOI:10.7498/aps.69.20191268

Topics