Journal of the Chinese Ceramic Society, Volume. 52, Issue 3, 1043(2024)
Transparent Armor Protective Materials : Structural Design and Application Performance Evaluation
[2] [2] WU Dianyu, LI Xin, ZHANG Xiaogang, et al. Ordnance Mater Sci Eng, 2022, 45(4): 75-79.
[4] [4] FAN Huachun, ZHANG Yaqiong, JI Chao, et al. J Appl Opt, 2021, 42(3): 383-391.
[6] [6] LIU Chuan. Tank Armoured Veh, 2017(9): 28-33.
[8] [8] LI Suiyi. Foreign Tank, 2015(7): 53-56.
[9] [9] FRANKS L P, RDECOM, HOLM D, et al. Transparent armor cost benefit study [R]. State of Michigan: US ARMY TARDEC, 2007.
[10] [10] FRANKS L P, HOLM D, KLEINBERG R. Transparent materials for armor ? A cost study[R], State of Michigan: US Army RDECOM- TARDEC, 2010.
[11] [11] STRASSBURGER E, HUNZINGER M, PATEL P, et al. Analysis of the fragmentation of AlON and spinel under ballistic impact[J]. J Appl Mech, 2013, 80(3): 031807.
[12] [12] GRUJICIC M, PANDURANGAN B, COUTRIS N. A computational investigation of the multi-hit ballistic-protection performance of laminated transparent-armor systems[J]. J Mater Eng Perform, 2012, 21(6): 837-848.
[13] [13] GRUJICIC M, BELL W C, PANDURANGAN B. Design and material selection guidelines and strategies for transparent armor systems[J]. Mater Des, 2012, 34: 808-819.
[14] [14] CROUCH I G. Body armour — New materials, new systems[J]. Def Technol, 2019, 15(3): 241-253.
[15] [15] STRA?BURGER E. Ballistic testing of transparent armour ceramics[J]. J Eur Ceram Soc, 2009, 29(2): 267-273.
[16] [16] DRESCH A B, VENTURINI J, ARCARO S, et al. Ballistic ceramics and analysis of their mechanical properties for armour applications: A review[J]. Ceram Int, 2021, 47(7): 8743-8761.
[17] [17] WANG Q, CHEN Z H, CHEN Z F. Design and characteristics of hybrid composite armor subjected to projectile impact[J]. Mater Des 1980 2015, 2013, 46: 634-639.
[19] [19] WEI Huazhen, ZHONG Weihua, YU Guang. J Mater Eng, 2020, 48(8): 25-32.
[21] [21] LIU Jiaxi, SHI Xiaodong, JIANG Liangbao, et al. J Mater Eng, 2021, 49(11): 30-40.
[23] [23] ZHANG Yun, DANG Xiaozheng. Foreign Tank, 2009(4): 34-36.
[24] [24] GAJDOWSKI C, D'ELIA R, FADERL N, et al. Mechanical and optical properties of MgAl2O4 ceramics and ballistic efficiency of spinel based armour[J]. Ceram Int, 2022, 48(13): 18199-18211.
[25] [25] MCCAULEY J W, STRASSBURGER E, PATEL P, et al. Experimental observations on dynamic response of selected transparent armor materials[J]. Exp Mech, 2013, 53(1): 3-29.
[26] [26] SUBHASH G. Transparent armor materials[J]. Exp Mech, 2013, 53(1): 1-2.
[28] [28] TIAN Haodong, XU Chi, XU Shaokun, et al. Bull Chin Ceram Soc, 2022, 41(7): 2502-2510.
[30] [30] HU Wei, TAN Baoquan, QIN Wencheng, et al. Glass Enamel, 2018, 46(3): 44-50.
[31] [31] GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Phil Trans R Soc Lond A, 1921, 221(582-593): 163-198.
[33] [33] MA Jun. Brick Tile World, 2003(4): 7-9.
[35] [35] ZHAO Jinsong. Eng Plast Appl, 1999, 27(11): 18-19.
[36] [36] WANG M B, JIANG L B, LI X Y, et al. Structure and mechanical response of chemically strengthened aluminosilicate glass under different post-annealing conditions[J]. J Non Cryst Solids, 2021, 554: 120620.
[37] [37] MACRELLI G, VARSHNEYA A K, MAURO J C. Simulation of glass network evolution during chemical strengthening: Resolution of the subsurface compression maximum anomaly[J]. J Non Cryst Solids, 2019, 522: 119457.
[38] [38] JANNOTTI P, SUBHASH G, IFJU P, et al. Influence of ultra-high residual compressive stress on the static and dynamic indentation response of a chemically strengthened glass[J]. J Eur Ceram Soc, 2012, 32(8): 1551-1559.
[39] [39] LEE J, NAM J, KO J, et al. Influence of pre-heat treatment on glass structure and chemical strengthening of aluminosilicate glass[J]. J Non Cryst Solids, 2023, 609: 122266.
[41] [41] JI Feiyan, XU Jinwei. Glass, 2019, 46(11): 41-44.
[42] [42] JOSEPH UDI U, YUSSOF M M, MUSA AYAGI K, et al. Environmental degradation of structural glass systems: A review of experimental research and main influencing parameters[J]. Ain Shams Eng J, 2023, 14(5): 101970.
[44] [44] ZHAO Yong, ZHANG Yizhi, LI Kun. J Gun Launch Contr, 2018, 39(2): 86-90.
[46] [46] YANG Yinghui. Inf Adv Mater, 2007(1): 10.
[48] [48] YI Guohong, CHEN Yu. Grand Gard Sci , 2009(23): 38-39.
[50] [50] LIU Xiangping. Foreign Tank, 2010(7): 24.
[52] [52] TANG Wenqi, YAN Lihong, ZHENG Xiaobin, et al. J Funct Mater, 2022, 53(5): 5001-5008.
[54] [54] HU Keyan, XU Jun, TANG Huili, et al. J Inorg Mater, 2013, 28(3): 307-311.
[56] [56] HU Keyan, XU Jun, TANG Huili, et al. Acta Phys Sin, 2013, 62(6): 371-376.
[57] [57] KIRKPATRICK A, HARRIS D C, JOHNSON L F. Effect of ion implantation on the strength of sapphire at 300-600℃[J]. J Mater Sci, 2001, 36(9): 2195-2201.
[58] [58] LIU C, WANG Z H, LIU F, et al. Route to high contrast and focusable intensity in PW-class femtosecond Ti: sapphire laser facility[J]. Rev Laser Eng, 2010, 38(9): 685-688.
[59] [59] CHENG J, WU J, ZHOU Y G, et al. Characterization of fracture toughness and micro-grinding properties of monocrystal sapphire with a multi-layer toughening micro-structure (MTM)[J]. J Mater Process Technol, 2017, 239: 258-272.
[60] [60] YANG S, HOMA D, HEYL H, et al. Application of sapphire-fiber-bragg-grating-based multi-point temperature sensor in boilers at a commercial power plant[J]. Sensors, 2019, 19(14): 3211.
[62] [62] WANG Kang, TIAN Hongyi, YANG Wei, et al. Adv Ceram, 2023, 44(2): 77-116.
[63] [63] RUBAT DU MERAC M, KLEEBE H J, MüLLER M M, et al. Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel[J]. J Am Ceram Soc, 2013, 96(11): 3341-3365.
[65] [65] LI Zhen, LEI Muyun, LOU Zailiang, et al. Bull Chin Ceram Soc, 2011, 30(4): 891-894.
[66] [66] LIU Q, JING Y Q, SU S, et al. Microstructure and properties of MgAl2O4 transparent ceramics fabricated by hot isostatic pressing[J]. Opt Mater, 2020, 104: 109938.
[68] [68] CHEN Xiaoming, FU Li, SU Jianhao, et al. Mater Rep, 2020, 34(Suppl 2): 1117-1122.
[69] [69] SULLIVAN R M. A historical view of ALON[C]//Defense and Security. Proc SPIE 5786, Window and Dome Technologies and Materials IX, Orlando, Florida, USA. 2005, 5786: 23-32.
[70] [70] GOLDMAN L M, BALASUBRAMANIAN S, KASHALIKAR U, et al. Scale up of large ALON windows[C]//SPIE Defense, Security, and Sensing. Proc SPIE 8708, Window and Dome Technologies and Materials XIII, Baltimore, Maryland, USA. 2013, 8708: 870804.
[71] [71] GUO H L, ZHANG J, MAO X J, et al. Strengthening mechanism of twin lamellas in transparent AlON ceramics[J]. J Eur Ceram Soc, 2018, 38(9): 3235-3239.
[73] [73] ZHENG K P, WANG H, XU P Y, et al. The hydrolysis process of γ-AlON powder and preparation of highly transparent ceramics with aqueous gel-casting[J]. J Eur Ceram Soc, 2023, 43(2): 555-564.
[74] [74] JIA X T, ZHANG Z H, LI X Y, et al. Investigation on mechanical properties of AlON ceramics synthesized by spark plasma sintering[J]. J Eur Ceram Soc, 2023, 43(3): 889-899.
[76] [76] TIAN Xuetao, WANG Xue, WEN Mengjuan, et al. J Funct Mater, 2015, 46(Suppl 2): 49-55.
[78] [78] LIU Chong, LIU Shijun. Inf Rec Mater, 2019, 20(10): 1-3.
[80] [80] LIU Rong, LI Hongmei. Polym Mater Sci Eng, 2014, 30(9): 177-182.
[82] [82] CHEN Xing, CHEN Suwen, LI Guoqiang. J Tongji Univ:Nat Sci, 2021, 49(11): 1565-1574.
[84] [84] FENG Haigang, LI Lin. World Plast, 2005, 23(10): 42-43.
[85] [85] ZHANG X H, HAO H, SHI Y C, et al. The mechanical properties of Polyvinyl Butyral (PVB) at high strain rates[J]. Constr Build Mater, 2015, 93: 404-415.
[87] [87] PU Yong, ZHANG Hong, XIE Yuzhen, et al. Bull Chin Ceram Soc, 2019, 38(11): 3565-3572.
[89] [89] GUO Anru, ZHANG Sai, SONG Tijie, et al. Chem Adhes, 2019, 41(2): 129-132.
[91] [91] ZHANG Junrui. Preparation of high performance transparent polyurethane coatings and the relationship between structure and properties[D]. Guangzhou: South China University of Technology, 2013.
[93] [93] SHEN Huifang, CHEN Huanqin. Adhes China, 2005, 26(1): 35-37.
[95] [95] SHEN Huifang, CHEN Huanqin. Chem Adhes, 2005, 27(4): 225-229.
[97] [97] XU Haixiang. Rubber Plast Resour Util, 2018(3): 25-33.
[99] [99] LI Lijuan. China Adhes, 2004, 13(1): 45-49.
[101] [101] DU (Xin)(Wei|Yu). Synthesis and performances study of A novel silicone adhesive[D]. Beijing: Beijing University of Chemical Technology, 2021.
[103] [103] MADHUBAILE, YU Zhanchang. World Rubber Ind, 1989, 16(6): 27-31.
[105] [105] HU Chengxi. N Chem Mater, 1989, 17(8): 6-9.
[107] [107] JIN Yuan, WANG Huizu. China Build Waterproofing, 2011(2): 39-41.
[109] [109] LI Xiaoguang, ZHANG Xiurong, YAN Jie. Guangdong Chem Ind, 2006, 33(8): 9-11.
[111] [111] YAO Huiqin. Jiangxi Sci, 2005, 23(3): 294-298.
[113] [113] JIN Wei, TIAN Gongyou. Silicone Mater, 2017, 31(6): 439-442.
[115] [115] MA Liting, CHEN Xinwen, SU Bin. J Mater Eng, 2004, 32(8): 57-59.
[117] [117] JIANG Hui. Mod Commun, 2013(9): 105.
[119] [119] DENG Xiaoqiu, LI Zhiqiang, ZHAO Longmao, et al. Mech Eng, 2014, 36(5): 540-550.
[121] [121] QIAN Xiaohui, FENG Yi, CHEN Haixia, et al. Build Struct, 2022, 52(8): 42-47.
[123] [123] LI Yongsheng. Study of toughened organic glass with high transmittance[D]. Nanchang: Nanchang Hangkong University, 2011.
[125] [125] HUANG Chengya, LI Yun, GONG Kecheng, et al. China Plast Ind, 2003, 31(3): 22-25.
[127] [127] XUE Bingfu, ZHANG Lei. Inn Mong Petrochem Ind, 2009, 35(1): 19-20.
[129] [129] YAN Haitao. Chem Eng Des Commun, 2021, 47(5): 101-102.
[131] [131] ZENG Weihua, LIU Junyi, XIE Haisheng, et al. Polym Mater Sci Eng, 2021, 37(7): 183-190.
[133] [133] ZHU Aihua. Ind Innov, 2020(14): 114-115.
[135] [135] ZHANG Wenqin. Chem Propellants Polym Mater, 2022, 20(3): 14-19.
[137] [137] YING Jie, QIU Qihao, ZHANG Haojie, et al. China Plast, 2020, 34(7): 30-35.
[139] [139] YING Jie, QIU Qihao, GU Hainan, et al. China Plast Ind, 2019, 47(11): 26-29.
[141] [141] ZHANG Yuewen. Preparation and ultraviolet resistance aging properties of transparent PC composites[D]. Nanjing: Nanjing University of Information Science & Technology, 2019.
[143] [143] ZHANG Xiaohua. Studies on structure and properties of transparent polyurethane elastomer (in Chinese, dissertation). Chengdu: Sichuan University, 2002.
[145] [145] ZHEN Jianjun, LI Yingjian, ZHAI Wen, et al. China Elastomerics, 2017, 27(3): 29-32.
[146] [146] KRóL P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers[J]. Prog Mater Sci, 2007, 52(6): 915-1015.
[148] [148] XU Jin, SUN Baolong, ZHANG Ruijie, et al. China Plast Ind, 2022, 50(8): 126-131.
[149] [149] BLESS S, CHEN T. Impact damage in layered glass[J]. Int J Fract, 2010, 162(1-2): 151-158.
[150] [150] DOLAN A M. Ballistic transparent armor testing using A multi-hit rifle pattern[R]. State of Michigan: U.S. army tank-automotive command, 2007.
[151] [151] STRASSBURGER E, PATEL P, MCCAULEY J W, et al. High-speed transmission shadowgraphic and dynamic photoelasticity study of stress wave and impact damage propagation in transparent materials and laminates using the Edge-On Impact (EOI) method[C]// A reprint from the 25th Army Science Conference, Orlando, The United States of America, 2008, ARL-RP-203.
[153] [153] YANG Zhuoyue, ZHAO Jiaping. Ordnance Mater Sci Eng, 1995, 18(3): 29-32.
[154] [154] CHUN Z Y, CHAO X, HUI Y J, et al. Anti-penetration Performance and Micro-damage Mechanism of Ti-6Al-4V Alloy Composite Armor [J]. Rare Met Mater Eng, 2022, 51(7): 2329-2335.
[156] [156] YU Yilei, WANG Xiaodong, REN Wenke, et al. Acta Armamentarii. https://kns.cnki.net/kcms2/detail/11.2176.TJ.20230605.1552.004.html.
[158] [158] ZHANG Wei, HAN Xu, HU Dean, et al. Acta Armamentarii, 2009, 30(Suppl 2): 177-181.
[159] [159] WALLEY S M, FIELD J E, BLAIR P W, et al. The effect of temperature on the impact behaviour of glass/polycarbonate laminates[J]. Int J Impact Eng, 2004, 30(1): 31-53.
[160] [160] RIVERS G, CRONIN D. Influence of moisture and thermal cycling on delamination flaws in transparent armor materials: Thermoplastic polyurethane bonded glass-polycarbonate laminates[J]. Mater Des, 2019, 182: 108026.
[161] [161] HOPKINS H G. Wave motion in elastic solids[J]. Phys Bull, 1976, 27(1): 30.
[162] [162] SCHULTZ R A, BRADT R C. Fracture Mechanics of Ceramics: Fracture Fundamentals, High-Temperature Deformation, Damage, and Design[M]. Boston, MA: Springer US, 1992.
[163] [163] IWASA M, BRADT R C. Fracture toughness of single crystal alumina[J]. Adv in Ceram, 1984, 10:767-779
[164] [164] TASKER P W. Surface of magnesia and alumina[J]. Adv in Ceramics, 1984, 10: 176-189
[165] [165] MACKRODT W C. Atomistic simulation of the surfaces of oxides[J]. J Chem Soc, Faraday Trans 2, 1989, 85(5): 541.
[166] [166] HARTMAN P. The effect of surface relaxation on crystal habit: cases of corundum (α-Al2O3) and Hematite (α-Fe2O3)[J]. J Cryst Growth, 1989, 96(3): 667-672.
[167] [167] HANEY E J, SUBHASH G. Edge-on-impact response of a coarse-grained magnesium aluminate spinel rod[J]. Int J Impact Eng, 2012, 40-41: 26-34.
[168] [168] ZHANG G F, GAZONAS G A, BOBARU F. Supershear damage propagation and sub-Rayleigh crack growth from edge-on impact: a peridynamic analysis[J]. Int J Impact Eng, 2018, 113: 73-87.
[169] [169] LEIGHTON K, CARBERRY J, SERAFIN W, et al. Transparent armor for the new standard in battlefield performance[J]. Ceram Eng Sci Proc, 2011, 32(5): 29-41.
[171] [171] QIU Rixiang, YANG Jie. China Secur Prot Certif, 2017(3): 52-55
Get Citation
Copy Citation Text
SHAO Cen, ZHANG Le, WANG Siqing, WANG Tong, QIU Fan, MA qingfei, CHEN Hao. Transparent Armor Protective Materials : Structural Design and Application Performance Evaluation[J]. Journal of the Chinese Ceramic Society, 2024, 52(3): 1043
Category:
Received: Sep. 15, 2023
Accepted: --
Published Online: Aug. 5, 2024
The Author Email: Le ZHANG (zhangle@jsnu.edu.cn)
CSTR:32186.14.