Optics and Precision Engineering, Volume. 19, Issue 8, 1982(2011)
Dual dictionary sparse restoration of blurred images
[1] [1] HAMAMOTO T,AIZAWA K. A computational image sensor with adaptive pixel-based integration time[J]. IEEE Journal of Solid-State Circuits, 2001, 36(4): 580-585.
[2] [2] BEN-EZRA M,NAYAR S K. Motion-based motion deblurring[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6): 689.
[3] [3] ZHANG H. Research of total variance method for restoration of motion-blurred images[D]. Xi'an: Northwest University, 2009. (in Chinese)
[4] [4] CALVETTI D, LEWIS B, REICHEL L. Restoration of images with spatially variant blur by the GMRES method[J]. SPIE, 2000, 4116: 364-374.
[5] [5] YUAN L,SUN J,QUAN L, et al.. Image deblurring with blurred/noisy image pairs[C]. Proceedings of ACM SIGGRAPH,2007,26(3): 1-10.
[6] [6] OLSHAUSEN B A. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996,381(6583): 607-609.
[7] [7] OLSHAUSEN B A,FIELD D J. Sparse coding with an overcomplete basis set: A strategy employed by V1[J]. Vision research, 1997, 37(23): 3311-3325.
[8] [8] MA J,LE DIMET F X. Deblurring from highly incomplete measurements for remote sensing[J]. Geoscience and Remote Sensing, IEEE Transactions on,2009, 47(3): 792-802.
[9] [9] ELAD M,FIGUEIREDO M A T,MA Y. On the role of sparse and redundant representations in image processing[J].IEEE, 2010,98(6): 972-982.
[10] [10] MALLAT S G,ZHANG Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993,41(12): 3397-3415.
[11] [11] BERGEAUD F,MALLAT S. Matching pursuit of images [J]. Wavelet Analysis and Its Applications, 1998, 7: 285-300.
[12] [12] PATI Y C,REZAIFAR R,KRISHNAPRASAD P. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition [C]. Conference on Signals,Systems and Computers,1993: 40-44.
[13] [13] DONOHO D L,ELAD M,TEMLYAKOV V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006,52(1): 6-18.
[14] [14] RANDALL P A. Sparse recovery via convex optimization [D]. California Institute of Technology, 2009.
[15] [15] CHEN S S, DONOHO D L,SAUNDERS M A. Atomic decomposition by basis pursuit [J]. SIAM Journal on Scientific Computing, 1999, 20(1): 33-61.
[16] [16] PU J, ZHANG J P. Super-resolution through dictionary learning and sparse representation [J]. Pattern Recognition and Artificial Intelligence, 2010, 23(3): 335-340. (in Chinese)
[17] [17] XIAO Q, DING X H, WANG SH J, et al.. Image denoising based on adaptive over—complete sparse representation [J]. Chinese Joumal of Scientific Instrument, 2009, 30(9): 1886-1890. (in Chinese)
[18] [18] FADILI M, STARCK J L. Sparse representation-based image deconvolution by iterative thresholding[J/OL]http: //www.oamp.fr/conf/ada4/pub/19/S/ADAIV_Fadili.pdf. 2007.
[19] [19] ELAD M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing[M].New York: Springer Verlag,2010.
[20] [20] ELAD M,AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006,15(12): 3736-3745.
[21] [21] XUE M. Aplication research of compressive sensoring and sparse decomposition in image restoration [D]. Xi'an: Xidian University, 2009. (in Chinese)
Get Citation
Copy Citation Text
FENG Liang, WANG Ping, XU Ting-fa, SHI Ming-zhu, ZHAO Feng. Dual dictionary sparse restoration of blurred images[J]. Optics and Precision Engineering, 2011, 19(8): 1982
Category:
Received: Jun. 9, 2011
Accepted: --
Published Online: Aug. 29, 2011
The Author Email: Liang FENG (finalion@bit.edu.cn)