International Journal of Extreme Manufacturing, Volume. 4, Issue 3, 32004(2022)

Advances in the design and manufacturing of novel freeform optics

Sumit Kumar, Zhen Tong*, and Xiangqian Jiang
Author Affiliations
  • EPSRC Future Metrology Hub, Centre for Precision Technologies, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom
  • show less
    References(244)

    [1] [1] Evans C J and Bryan J B 1999 “Structured”, “textured” or “engineered” surfaces CIRP Ann. 48 541-56

    [2] [2] Jiang X Q, Scott P and Whitehouse D 2007 Freeform surface characterisation—a fresh strategy CIRP Ann. 56 553-6

    [3] [3] Zhang B, Hou W, Jin G and Zhu J 2021 Simultaneous improvement of field-of-view and resolution in an imaging optical system Opt. Express 29 9346-62

    [4] [4] Moein S and Suleski T J 2021 Freeform optics for variable extended depth of field imaging Opt. Express 29 40524-37

    [5] [5] Davies M A, Dutterer B S, Swagler S, Lawing E and Horvath N 2021 Optomechanical design and fabrication of a wide field of view 250-mm-aperture freeform imaging system Proc. 22nd Advanced Maui Optical and Space Surveillance Technologies (AMOS) Conf. (Maui, HI)

    [6] [6] Zhan A L, Colburn S, Dodson C M and Majumdar A 2017 Metasurface freeform nanophotonics Sci. Rep. 7 1673

    [7] [7] Geyl R, Ruch E, Bourgois R, Mercier-Ythier R, Leplan H and Riguet F 2018 Freeform optics design, fabrication and testing technologies for space applications Proc. SPIE 11180 111800P

    [8] [8] Falaggis K, Rolland J, Duerr F and Sohn A 2022 Freeform optics: introduction Opt. Express 30 6450-5

    [9] [9] Vives S, Pascal S, Secroun A, Gray M, Le Mignant D, Cuby J G and Ferrari M 2011 Modeling highly aspherical optical surfaces using a new polynomial formalism into Zemax Proc. SPIE 8167 81670B

    [10] [10] Caron J and Baumer S 2021 Progress in freeform mirror design for space applications Proc. SPIE 11852 118521S

    [11] [11] Wang Y B, Wang C L, Xing Q R, Liu F, Li Y F, Chai L, Wang Q Y, Fang F Z and Zhang X D 2009 Periodic optical delay line based on a tilted parabolic generatrix helicoid reflective mirror Appl. Opt. 48 1998-2005

    [12] [12] Bentez P, Minano J C, Zamora P, Buljan M, Cvetkovic A, Hernandez M, Mohedano R, Chaves J and Dross O 2010 Free-form Kohler nonimaging optics for photovoltaic concentration Proc. SPIE 7849 78490K

    [13] [13] Hussein S, Hamilton B, Tutunea-Fatan O R and Bordatchev E 2016 Novel retroreflective micro-optical structure for automotive lighting applications SAE Int. J. Passeng. Cars—Mech. Syst. 9 497-506

    [14] [14] Cheng D W, Wang Y T, Hua H and Talha M M 2009 Design of an optical see-through head-mounted display with a low f -number and large field of view using a freeform prism Appl. Opt. 48 2655-68

    [15] [15] Tang Z Y and Gross H 2021 Improved correction by freeform surfaces in prism spectrometer concepts Appl. Opt. 60 333-41

    [16] [16] Ding Y, Liu X, Zheng Z R and Gu P F 2008 Freeform LED lens for uniform illumination Opt. Express 16 12958-66

    [17] [17] Feng Z X, Cheng D W and Wang Y T 2020 Iterative freeform lens design for prescribed irradiance on curved target Opto-Electron. Adv. 3 200010

    [18] [18] Wu R M, Feng Z X, Zheng Z R, Liang R G, Benitez P, Minano J C and Duerr F 2018 Design of freeform illumination optics Laser Photonics Rev. 12 1700310

    [19] [19] Su X, Ji P, Liu K, Walker D, Yu G Y, Li H Y, Li D and Wang B 2019 Combined processing chain for freeform optics based on atmospheric pressure plasma processing and bonnet polishing Opt. Express 27 17979-92

    [20] [20] Hofele M, Roth A, Schanz J, Neuer J, Harrison D K, De Silva A K M and Riegel H 2021 Laser polishing of additive manufactured aluminium parts by modulated laser power Micromachines 12 1332

    [21] [21] Tong Z, Zhong W B, To S and Zeng W H 2020 Fast-tool-servo micro-grooving freeform surfaces with embedded metrology CIRP Ann. 69 505-8

    [22] [22] Chen S Y, Xue S, Zhai D D and Tie G P 2020 Measurement of freeform optical surfaces: trade-off between accuracy and dynamic range Laser Photonics Rev. 14 1900365

    [23] [23] Fang F Z, Zhang X D, Weckenmann A, Zhang G X and Evans C 2013 Manufacturing and measurement of freeform optics CIRP Ann. 62 823-46

    [24] [24] Winston R, Minano J C, Benitez P, Shatz N and Bortz J C 2005 Nonimaging Optics (Burlington, MA: Elsevier Academic Press)

    [25] [25] Minano J C and Gonzalez J C 1992 New method of design of nonimaging concentrators Appl. Opt. 31 3051-60

    [26] [26] Minano J C, Gonzlez J C and Benitez P 1995 A high-gain, compact, nonimaging concentrator: RXI Appl. Opt. 34 7850-6

    [27] [27] Minano J C, Benitez P and Gonzalez J C 1995 RX: a nonimaging concentrator Appl. Opt. 34 2226-35

    [28] [28] Minano J C, Gonzalez J C and Zanesco I 1994 Flat high concentration devices Proc. IEEE 1st World Conf. on Photovoltaic Energy Conversion—WCPEC (A Joint Conf. PVSC, PVSEC and PSEC) (Waikoloa, HI: IEEE) pp 1123-6

    [29] [29] Barone G, Buonomano A, Forzano C and Palombo A 2019 Solar thermal collectors Solar Hydrogen Production ed F Calise, M D D’Accadia, M Santarelli, A Lanzini and D Ferrero (Amsterdam: Elsevier) ch 6, pp 151-78

    [30] [30] Muhammad-Sukki F, Ramirez-Iniguez R, McMeekin S G, Stewart B G and Clive B 2010 Solar concentrators Int. J. Appl. Sci. 1 1-15

    [31] [31] Vu N H and Shin S 2016 A concentrator photovoltaic system based on a combination of prism-compound parabolic concentrators Energies 9 645

    [32] [32] Li X, Dai Y J, Li Y and Wang R Z 2013 Performance investigation on a novel single-pass evacuated tube with a symmetrical compound parabolic concentrator Sol. Energy 98 275-89

    [33] [33] Ning X H, Winston R and O’Gallagher J 1987 Dielectric totally internally reflecting concentrators Appl. Opt. 26 300-5

    [34] [34] Benitez P, Minano J C, Blen J, Mohedano R, Chaves J, Dross O, Hernandez M, Alvarez J L and Falicoff W 2004 SMS design method in 3D geometry: examples and applications Proc. SPIE 5185 18-29

    [35] [35] Cvetkovic A 2009 Free-form optical systems for nonimaging applications PhD Thesis Universidad Politécnica De Madrid, Spain (available at: https://oa.upm.es/1782/)

    [36] [36] Wojtanowski J and Drozd T 2020 Simplified geometric approach to freeform beam shaper design Int. J. Opt. 2020 2896593

    [37] [37] Dickey F M and Lizotte T E 2017 Laser Beam Shaping Applications 2nd edn (Boca Raton, FL: CRC Press)

    [38] [38] Frieden B R 1965 Lossless conversion of a plane laser wave to a plane wave of uniform irradiance Appl. Opt. 4 1400-3

    [39] [39] Rhodes P W and Shealy D L 1980 Refractive optical systems for irradiance redistribution of collimated radiation: their design and analysis Appl. Opt. 19 3545-53

    [40] [40] Jiang W, Shealy D L and Martin J C 1993 Design and testing of a refractive reshaping system Proc. SPIE 2000 64-75

    [41] [41] Hoffnagle J A and Jefferson C M 2003 Beam shaping with a plano-aspheric lens pair Opt. Eng. 42 3090-9

    [42] [42] Alvarez L W 1967 Two-element variable-power spherical lens US Patent 3305294

    [43] [43] Zou Y C, Zhang W, Chau F S and Zhou G Y 2015 Miniature adjustable-focus endoscope with a solid electrically tunable lens Opt. Express 23 20582-92

    [44] [44] Zhou G Y, Yu H B and Chau F S 2013 Microelectromechanically-driven miniature adaptive Alvarez lens Opt. Express 21 1226-33

    [45] [45] Chaves J 2016 Introduction to Nonimaging Optics 2nd edn (Boca Raton, FL: CRC Press) p 786

    [46] [46] Feng Z X, Luo Y and Han Y J 2010 Design of LED freeform optical system for road lighting with high luminance/illuminance ratio Opt. Express 18 22020-31

    [47] [47] Luo Y, Feng Z X, Han Y J and Li H T 2010 Design of compact and smooth free-form optical system with uniform illuminance for LED source Opt. Express 18 9055-63

    [48] [48] Jiang J B, To S, Lee B W and Cheung B 2010 Optical design of a freeform TIR lens for LED streetlight Optik 121 1761-5

    [49] [49] Wu R M, Huang C Y, Zhu X Y, Cheng H N and Liang R G 2016 Direct three-dimensional design of compact and ultra-efficient freeform lenses for extended light sources Optica 3 840-3

    [50] [50] Wu R M, Zheng Z R, Li H F and Liu X 2011 Freeform lens for off-axis illumination in optical lithography system Opt. Commun. 284 2662-7

    [51] [51] Fournier F and Rolland J 2008 Optimization of freeform lightpipes for light-emitting-diode projectors Appl. Opt. 47 957-66

    [52] [52] Munoz F, Benitez P and Minano J 2008 High-order aspherics: the SMS nonimaging design method applied to imaging optics Proc. SPIE 7061 70610G

    [53] [53] Nie Y F, Mohedano R, Benitez P, Chaves J, Minano J C, Thienpont H and Duerr F 2016 Optical design of an ultrashort throw ratio projector with two freeform mirrors Proc. SPIE 9947 99470C

    [54] [54] Zheng Z R, Sun X T, Liu X and Gu P F 2008 Design of reflective projection lens with Zernike polynomials surfaces Displays 29 412-7

    [55] [55] Bian Y X, Li H F, Wang Y F, Zheng Z R and Liu X 2015 Method to design two aspheric surfaces for a wide field of view imaging system with low distortion Appl. Opt. 54 8241-7

    [56] [56] Zhuang Z F, Chen Y T, Yu F H and Sun X W 2014 Field curvature correction method for ultrashort throw ratio projection optics design using an odd polynomial mirror surface Appl. Opt. 53 E69-E76

    [57] [57] Rolland J P and Cakmakci O 2005 The past, present, and future of head-mounted display designs Proc. SPIE 5638 368-77

    [58] [58] Foote B and Melzer J 2015 A history of helmet mounted displays Proc. SPIE 9470 94700T

    [59] [59] Wang Y T, Cheng D W and Xu C 2017 Freeform optics for virtual and augmented reality Optical Design and Fabrication 2017 (Freeform, IODC, OFT) (Denver, CO: Optica Publishing Group) p JTu3A.1

    [60] [60] Hua H, Hu X D, Gao C Y and Qin X 2014 Eyetracked optical see-through head-mounted display as an AAC device Proc. SPIE 9117 91170T

    [61] [61] Benitez P et al 2017 Advanced freeform optics enabling ultra-compact VR headsets Proc. SPIE 10335 103350I

    [62] [62] Hu X D and Hua H 2014 High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics Opt. Express 22 13896-903

    [63] [63] National Aeronautics and Space Administration 2010 “Infrared waves” (NASA Science) (available at: http://science.nasa.gov/ems/07_infraredwaves)

    [64] [64] Gade R and Moeslund T B 2014 Thermal cameras and applications: a survey Mach. Vis. Appl. 25 245-62

    [65] [65] Wu W C, Jin G F and Zhu J 2019 Optical design of the freeform reflective imaging system with wide rectangular FOV and low F-number Results Phys. 15 102688

    [66] [66] Chen J J, Su J H, Jin N, Li Z X, Zhang X D, Zhang H and Zhou L G 2017 Design and tests of a high-performance long-wave infrared refractive thermal imager: freeform lens in coaxial system Appl. Sci. 7 1195

    [67] [67] Zhu J, Hou W, Zhang X D and Jin G F 2015 Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view J. Opt. 17 015605

    [68] [68] Jiang X Q 2018 Freeform CIRP Encyclopedia of Production Engineering ed The International Academy for Production Engineering (Berlin: Springer) pp 1-7

    [69] [69] Duerr F, Benitez P, Minano J C, Meuret Y and Thienpont H 2012 Analytic free-form lens design in 3D: coupling three ray sets using two lens surfaces Opt. Express 20 10839-46

    [70] [70] Hicks R A 2007 Direct methods for freeform surface design Proc. SPIE 6668 666802

    [71] [71] Wassermann G D and Wolf E 1949 On the theory of aplanatic aspheric systems Proc. Phys. Soc. B 62 2-8

    [72] [72] Vaskas E M 1957 Note on the Wassermann-wolf method for designing aspheric surfaces J. Opt. Soc. Am. 47 669-70

    [73] [73] Volatier J B and Druart G 2019 Differential method for freeform optics applied to two-mirror off-axis telescope design Opt. Lett. 44 1174-7

    [74] [74] Knapp D J 2002 Conformal optical design PhD Thesis The University of Arizona, Tucson, Arizona (available at: http://hdl.handle.net/10150/289852)

    [75] [75] Ries H and Rabl A 1994 Edge-ray principle of nonimaging optics J. Opt. Soc. Am. A 11 2627-32

    [76] [76] Ries H R and Winston R 1994 Tailored edge-ray reflectors for illumination J. Opt. Soc. Am. A 11 1260-4

    [77] [77] Jenkins D and Winston R 1996 Tailored reflectors for illumination Appl. Opt. 35 1669-72

    [78] [78] Ong P T, Gordon J M and Rabl A 1996 Tailored edge-ray designs for illumination with tubular sources Appl. Opt. 35 4361-71

    [79] [79] Ries H and Muschaweck J 2002 Tailored freeform optical surfaces J. Opt. Soc. Am. A 19 590-5

    [80] [80] William A P 1998 Design of illumination lenses via extrinsic differential geometry Proc. SPIE 3428 154-62

    [81] [81] Fournier F R, Cassarly W J and Rolland J P 2010 Fast freeform reflector generation using source-target maps Opt. Express 18 5295-304

    [82] [82] Yang T, Jin G F and Zhu J 2017 Automated design of freeform imaging systems Light 6 e17081

    [83] [83] Benitez P and Minano J C 2007 The future of illumination design Opt. Photonics News 18 20-25

    [84] [84] Canavarro D, Chaves J and Collares-Pereira M 2019 Simultaneous multiple surface method for the design of new parabolic dish-type concentrator using a Cassegranian approach AIP Conf. Proc. 2126 050001

    [85] [85] Canavarro D 2014 Advances in the design of solar concentrators for thermal applications PhD Thesis Universidade de Evora, Portugal

    [86] [86] Gimenez-Benitez P, Minano J C, Blen J, Arroyo R M, Chaves J, Dross O, Hernandez M and Falicoff W 2004 Simultaneous multiple surface optical design method in three dimensions Opt. Eng. 43 1489-502

    [87] [87] Minano J C, Benitez P, Lin W, Infante J, Munoz F and Santamaria A 2009 An application of the SMS method for imaging designs Opt. Express 17 24036-44

    [88] [88] Valencia-Estrada J C and Garcia-Marquez J 2019 Freeform geometrical optics I: principles Appl. Opt. 58 9455-64

    [89] [89] Minano J C, Benitez P, Cvetkovic A and Mohedano R 2013 SMS 3D design method Illumination Engineering: Design with Nonimaging Optics ed R J Koshel (Piscataway, NJ: Wiley) pp 101-46

    [90] [90] Shack R V and Thompson K 1980 Influence of alignment errors of a telescope system on its aberration field Proc. SPIE 0251 146-53

    [91] [91] Thompson K 2005 Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry J. Opt. Soc. Am. A 22 1389-401

    [92] [92] Fuerschbach K, Rolland J P and Thompson K P 2014 Theory of aberration fields for general optical systems with freeform surfaces Opt. Express 22 26585-606

    [93] [93] Bauer A, Schiesser E M and Rolland J P 2018 Starting geometry creation and design method for freeform optics Nat. Commun. 9 1756

    [94] [94] Zheng X, Li Z X, Zhang X D and Fang F Z 2018 Manufacturing-constrained optical design methodology for cylindrical freeform reflective imaging system Opt. Express 26 22547-62

    [95] [95] Duerr F and Thienpont H 2021 Freeform imaging systems: Fermat’s principle unlocks “first time right” design Light 10 95

    [96] [96] Sasian J M 1994 How to approach the design of a bilateral symmetric optical system Opt. Eng. 33 2045-61

    [97] [97] Reshidko D and Sasian J 2018 Method for the design of nonaxially symmetric optical systems using free-form surfaces Opt. Eng. 57 101704

    [98] [98] Sasian J 2019 Method of confocal mirror design Opt. Eng. 58 015101

    [99] [99] Nikolov D K, Bauer A, Cheng F, Kato H, Vamivakas A N and Rolland J P 2021 Metaform optics: bridging nanophotonics and freeform optics Sci. Adv. 7 eabe5112

    [100] [100] Hazra L and Banerjee S 1999 Genetic algorithm in the structural design of Cooke triplet lenses Proc. SPIE 3737 172-9

    [101] [101] Trumper I L, Marrone D P and Kim D W 2019 Utilizing freeform optics in dynamic optical configuration designs J. Astron. Telesc. Instrum. Syst. 5 035005

    [102] [102] Zhuang Z F, Surman P and Yu F H 2016 A freeform optics design with limited data for extended LED light sources J. Mod. Opt. 63 2151-8

    [103] [103] Davies M A, Evans C J, Vohra R R, Bergner B C and Patterson S R 2003 Application of precision diamond machining to the manufacture of microphotonics components Proc. SPIE 5183 94-108

    [104] [104] Ikawa N, Donaldson R R, Komanduri R, Konig W, Aachen T H, McKeown P A, Moriwaki T and Stowers I F 1991 Ultraprecision metal cutting—the past, the present and the future CIRP Ann. 40 587-94

    [105] [105] Doetz M, Dambon O, Klocke F, Vogt C, Rascher R and Fahnle O 2018 Ductile mode single point diamond turning (SPDT) of binderless tungsten carbide molds Proc. SPIE 10742 107420E

    [106] [106] Pizani P S, Jasinevicius R, Duduch J G and Porto A J V 1999 Ductile and brittle modes in single-point-diamond-turning of silicon probed by Raman scattering J. Mater. Sci. Lett. 18 1185-7

    [107] [107] Shore P 1995 Machining of Optical Surfaces in Brittle Materials Using an Ultra-Precision Machine Tool Cranfield University, Cranfield (available at: http://hdl.handle.net/1826/3610)

    [108] [108] Yin Z Q, Dai Y F, Li S Y, Guan C L and Tie G P 2011 Fabrication of off-axis aspheric surfaces using a slow tool servo Int. J. Mach. Tools Manuf. 51 404-10

    [109] [109] Davis G E, Roblee J W and Hedges A R 2009 Comparison of freeform manufacturing techniques in the production of monolithic lens arrays Proc. SPIE 7426 742605

    [110] [110] Karpat Y 2019 Influence of diamond tool chamfer angle on surface integrity in ultra-precision turning of singe crystal silicon Int. J. Adv. Manuf. Technol. 101 1565-72

    [111] [111] Fang F Z, Zhang X D and Hu X T 2008 Cylindrical coordinate machining of optical freeform surfaces Opt. Express 16 7323-9

    [112] [112] Chen X, Kang M, Wang X S, Hassan M and Yang J 2017 Tool path optimal design for slow tool servo turning of complex optical surface Proc. Inst. Mech. Eng. B 231 825-37

    [113] [113] Wang D F, Sui Y X, Yang H J and Li D 2019 Adaptive spiral tool path generation for diamond turning of large aperture freeform optics Materials 12 810

    [114] [114] Patterson S R and Magrab E B 1985 Design and testing of a fast tool servo for diamond turning Precis. Eng. 7 123-8

    [115] [115] Trumper D L and Lu X D 2007 Fast tool servos: advances in precision, acceleration, and bandwidth Towards Synthesis of Micro-/Nano-systems ed F Kimura and K Horio (London: Springer) pp 11-19

    [116] [116] Patten J 2015 Micro laser assisted machining US Patent 20100065536

    [117] [117] Takeuchi Y, Suzukawa H, Kawai T and Sakaida Y 2006 Creation of ultra-precision microstructures with high aspect ratios CIRP Ann. 55 107-10

    [118] [118] Zhu Z W, To S, Tong Z, Zhuang Z X and Jiang X Q 2019 Modulated diamond cutting for the generation of complicated micro/nanofluidic channels Precis. Eng. 56 136-42

    [119] [119] Cheng M N, Cheung C F, Lee W B and To S 2007 A study of factors affecting surface quality in ultra-precision raster milling Key Eng. Mater. 339 400-6

    [120] [120] Li L and Yi A Y 2012 Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera Appl. Opt. 51 1843-52

    [121] [121] Schonemann L et al 2020 Synergistic approaches to ultra-precision high performance cutting CIRP J. Manuf. Sci. Technol. 28 38-51

    [122] [122] Owen J D, Davies M A, Schmidt D and Urruti E H 2015 On the ultra-precision diamond machining of chalcogenide glass CIRP Ann. 64 113-6

    [123] [123] Owen J D, Shultz J A, Suleski T J and Davies M A 2017 Error correction methodology for ultra-precision three-axis milling of freeform optics CIRP Ann. 66 97-100

    [124] [124] Zhang S J, To S, Zhu Z W and Zhang G Q 2016 A review of fly cutting applied to surface generation in ultra-precision machining Int. J. Mach. Tools Manuf. 103 13-27

    [125] [125] Sun Z W, To S and Yu K M 2019 An investigation in the ultra-precision fly cutting of freeform surfaces on brittle materials with high machining efficiency and low tool wear Int. J. Adv. Manuf. Technol. 101 1583-93

    [126] [126] Steinkopf R, Scheiding S, Gebhardt A, Risse S, Eberhardt R and Tünnermann A 2012 Fly-cutting and testing of freeform optics with sub-μm shape deviations Proc. SPIE 8486 84860K

    [127] [127] Brinksmeier E, Riemer O and Osmer J 2008 Tool path generation for ultra-precision machining of free-form surfaces Prod. Eng. 2 241-6

    [128] [128] Sun Z W, To S and Zhang S J 2018 A novel ductile machining model of single-crystal silicon for freeform surfaces with large azimuthal height variation by ultra-precision fly cutting Int. J. Mach. Tools Manuf. 135 1-11

    [129] [129] Brinksmeier E, Mutlugünes Y, Klocke F, Aurich J C, Shore P and Ohmori H 2010 Ultra-precision grinding CIRP Ann. 59 652-71

    [130] [130] Inasaki I 1987 Grinding of hard and brittle materials CIRP Ann. 36 463-71

    [131] [131] Bifano T G, Dow T A and Scattergood R O 1991 Ductile-regime grinding: a new technology for machining brittle materials J. Eng. Ind. 113 184-9

    [132] [132] Chen B, Guo B and Zhao Q L 2015 An investigation into parallel and cross grinding of aspheric surface on monocrystal silicon Int. J. Adv. Manuf. Technol. 80 737-46

    [133] [133] Wang S, Zhao Q L, Pan Y C and Guo B 2021 Ultra-precision raster grinding biconical optics with a novel profile error compensation technique based on on-machine measurement and wavelet decomposition J. Manuf. Process. 67 128-40

    [134] [134] Sun X, Stephenson D J, Ohnishi O and Baldwin A 2006 An investigation into parallel and cross grinding of BK7 glass Precis. Eng. 30 145-53

    [135] [135] Zhang Z Y, Yang X, Zheng L G and Xue D L 2017 High-performance grinding of a 2-m scale silicon carbide mirror blank for the space-based telescope Int. J. Adv. Manuf. Technol. 89 463-73

    [136] [136] Jiang W D and Tse B 2007 Freeform optics fabrication by diamond turning Proc. SPIE 10316 103161J

    [137] [137] Jiang W D 2007 Diamond turning aspheric projector mirrors Proc. SPIE 6722 672207

    [138] [138] Barkman M L, Dutterer B S, Davies M A and Suleski T J 2008 Free-form machining for micro-imaging systems Proc. SPIE 6883 68830G

    [139] [139] Stoebenau S and Sinzinger S 2009 Ultraprecision machining techniques for the fabrication of freeform surfaces in highly integrated optical microsystems Proc. SPIE 7426 742608

    [140] [140] Li L K and Yi A Y 2011 Design and fabrication of a freeform microlens array for uniform beam shaping Microsyst. Technol. 17 1713-20

    [141] [141] Chen Y and Yi A Y 2011 Design and fabrication of freeform glass concentrating mirrors using a high volume thermal slumping process Sol. Energy Mater. Sol. Cells 95 1654-64

    [142] [142] Stoebenau S, Kleindienst R, Hofmann M and Sinzinger S 2011 Computer-aided manufacturing for freeform optical elements by ultraprecision micromilling Proc. SPIE 8126 812614

    [143] [143] Joo J Y, Kim W H, Park S S and Song S B 2012 Design and manufacturing of LED primary optics for road lighting engine Proc. SPIE 8550 85502O

    [144] [144] Cheng Y, Zhang X D and Zhang G X 2013 Design and machining of Fresnel solar concentrator surfaces Int. J. Precis. Technol. 3 354-69

    [145] [145] Li Z X, Fang F Z, Chen J J and Zhang X D 2017 Machining approach of freeform optics on infrared materials via ultra-precision turning Opt. Express 25 2051-62

    [146] [146] Li D, Qiao Z, Walton K, Liu Y T, Xue J D, Wang B and Jiang X Q 2018 Theoretical and experimental investigation of surface topography generation in slow tool servo ultra-precision machining of freeform surfaces Materials 11 2566

    [147] [147] Zhang X D, Fang F Z, Wang H B, Wei G S and Hu X T 2009 Ultra-precision machining of sinusoidal surfaces using the cylindrical coordinate method J. Micromech. Microeng. 19 054004

    [148] [148] Wei L D, Li Y C, Jing J J, Feng L and Zhou J S 2018 Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface Opt. Express 26 8550-65

    [149] [149] Bauer A M 2016 Optical design with freeform surfaces, with applications in head-worn display design PhD Thesis University of Rochester, Rochestor, NY (available at: http://hdl.handle.net/1802/31694)

    [150] [150] Yan G P and Fang F Z 2019 Fabrication of optical freeform molds using slow tool servo with wheel normal grinding CIRP Ann. 68 341-4

    [151] [151] Kong L B, Ma Y G, Ren M J, Xu M and Cheung C 2020 Generation and characterization of ultra-precision compound freeform surfaces Sci. Prog. 103 1-21

    [152] [152] Wei Y, Zhai P, Chen X Y and He L 2020 Study on design and diamond turning of optical freeform surface for progressive addition lenses Math. Problems Eng. 2020 2850606

    [153] [153] Kang M, Yang J, Wang X S and Chen X 2018 Study on the variational-difference-based design and slow tool servo turning of progressive addition lenses Adv. Mech. Eng. 10 1-12

    [154] [154] Kong L B, Cheung C, To S, Wang B and Ho L 2014 A theoretical and experimental investigation of design and slow tool servo machining of freeform progressive addition lenses (PALs) for optometric applications Int. J. Adv. Manuf. Technol. 72 33-40

    [155] [155] Feng H H, Xia R S, Li Y Y, Chen J J, Yuan Y M, Zhu D X, Chen S Y and Chen H 2017 Fabrication of freeform progressive addition lenses using a self-developed long stroke fast tool servo Int. J. Adv. Manuf. Technol. 91 3799-806

    [156] [156] Cai H B, Xu J L, Xiao J G, Zhang Y F and Shi G Q 2017 Study on optical freeform surface manufacturing of progressive addition lens based on fast tool servo IOP Conf. Ser.: Earth Environ. Sci. 69 012130

    [157] [157] Li Y Y, Chen J J, Feng H H, Li C H, Qu J and Chen H 2014 Freeform manufacturing of a progressive addition lens by use of a voice coil fast tool servo Proc. SPIE 9281 92810Q

    [158] [158] International Organization for Standardization (ISO) 2019 Optics and photonics—preparation of drawings for optical elements and systems—part 8: surface texture (available at: www.iso.org/standard/69532.html)

    [159] [159] Walker D D, Brooks D, Freeman R, King A, McCavana G, Morton R, Riley D and Simms J 2001 First aspheric form and texture results from a production machine embodying the precession process Proc. SPIE 4451 267-76

    [160] [160] Ri P, Wang Z Z, Wang C J, Xie Y H, Zhang D X and Guo Y B 2014 Research on control optimization for bonnet polishing system Int. J. Precis. Eng. Manuf. 15 483-8

    [161] [161] Walker D D, Beaucamp A T H, Doubrovski V, Dunn C, Freeman R, McCavana G, Morton R, Riley D, Simms J and Wei X 2005 New results extending the Precessions process to smoothing ground aspheres and producing freeform parts Proc. SPIE 5869 58690E

    [162] [162] Walker D D et al 2006 New developments in the precessions process for manufacturing free-form, large-optical, and precision-mechanical surfaces Proc. SPIE 6148 614805

    [163] [163] Kordonski W, Gorodkin S and Zhuravski N 2001 Static yield stress in magnetorheological fluid Int. J. Mod. Phys. B 15 1078-84

    [164] [164] Gorana V K, Jain V K and Lal G K 2004 Experimental investigation into cutting forces and active grain density during abrasive flow machining Int. J. Mach. Tools Manuf. 44 201-11

    [165] [165] Kordonski W I and Jacobs S D 1996 Magnetorheological finishing Int. J. Mod. Phys. B 10 2837-48

    [166] [166] Harris D C 2011 History of magnetorheological finishing Proc. SPIE 8016 80160N

    [167] [167] Kumar S and Singh A K 2018 Magnetorheological nanofinishing of BK7 glass for lens manufacturing Mater. Manuf. Process 33 1188-96

    [168] [168] Supranowitz C and Jones A 2021 Magnetorheological finishing of freeform optics using a spiral toolpath Proc. SPIE 11889 118891B

    [169] [169] Faehnle O, Rascher R, Vogt C and Kim D W 2018 Closed-loop laser polishing using in-process surface finish metrology Appl. Opt. 57 834-8

    [170] [170] Chao C L, Chou W C, Ma K J, Chen T T, Liu Y M, Kuo Y S and Chen Y T 2005 Investigation of laser ablation of CVD diamond film Proc. SPIE 5713 21-28

    [171] [171] Lednev V N, Pershin S M, Ionin A A, Kudryashov S I, Makarov S V, Ligachev A E, Rudenko A A, Chmelnitsky R A and Bunkin A F 2013 Laser ablation of polished and nanostructured titanium surfaces by nanosecond laser pulses Spectrochim. Acta B 88 15-19

    [172] [172] Becker H, Czerner S, Ostendorf A, Stippler P and Matteazzi P 2005 Technology improvements for microscale laser sintering Proc. SPIE 5827 467-74

    [173] [173] Bordatchev E V, Hafiz A M K and Tutunea-Fatan O R 2014 Performance of laser polishing in finishing of metallic surfaces Int. J. Adv. Manuf. Technol. 73 35-52

    [174] [174] Weingarten C, Schmickler A, Willenborg E, Wissenbach K and Poprawe R 2017 Laser polishing and laser shape correction of optical glass J. Laser Appl. 29 011702

    [175] [175] Hecht K, Bliedtner J, Rost M, Müller H and Schmidt T 2015 Carbon-dioxide laser beam polishing of fused silica surfaces—process development and optimization Adv. Eng. Mater. 17 240-6

    [176] [176] Heidrich S, Willenborg E, Weingarten C and Temmler A 2015 Laser polishing and laser form correction of fused silica optics Mater. Sci. Eng. Technol. 46 668-74

    [177] [177] Yamada I 2014 Historical milestones and future prospects of cluster ion beam technology Appl. Surf. Sci. 310 77-88

    [178] [178] Grogan D F, Zhao T, Bovard B G and Macleod H A 1992 Planarizing technique for ion-beam polishing of diamond films Appl. Opt. 31 1483-7

    [179] [179] Insepov Z, Hassanein A, Norem J and Swenson D R 2007 Advanced surface polishing using gas cluster ion beams Nucl. Instrum. Methods Phys. Res. B 261 664-8

    [180] [180] Zou J, Zhong Y, Zhang J Z, Ekelund M and Shen Z J 2015 Separating macrostresses from microstresses in Al2O3-15vol%SiC particulate reinforced composites Scr. Mater. 109 84-88

    [181] [181] Sun G B, Jiang S L and Zhang J 2021 Research on Ion beam polishing efficiency with changing different beam diameters Proc. SPIE 11761 1176123

    [182] [182] Chkhalo N I, Churin S A, Pestov A E, Salashchenko N N, Vainer Y A and Zorina M V 2014 Roughness measurement and ion-beam polishing of super-smooth optical surfaces of fused quartz and optical ceramics Opt. Express 22 20094-106

    [183] [183] Bauer J, Frost F, Lehmann A, Ulitschka M, Li Y G and Arnold T 2019 Finishing of metal optics by ion beam technologies Opt. Eng. 58 092612

    [184] [184] de Schipper R 2012 Injection molding of optics for high volume consumer products Adv. Opt. Technol. 1 31-37

    [185] [185] Walther T 2010 Production of optical components using plastic injection molding technology Handbook of Plastic Optics 2nd edn, ed S Baumer (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp 197-217

    [186] [186] Fang F Z, Zhang N and Zhang X D 2016 Precision injection molding of freeform optics Adv. Opt. Technol. 5 303-24

    [187] [187] Dick L, Risse S and Tünnermann A 2016 Process influences and correction possibilities for high precision injection molded freeform optics Adv. Opt. Technol. 5 277-87

    [188] [188] Bensingh R J, Machavaram R, Boopathy S R and Jebaraj C 2019 Injection molding process optimization of a bi-aspheric lens using hybrid artificial neural networks (ANNs) and particle swarm optimization (PSO) Measurement 134 359-74

    [189] [189] Li L K, Raasch T W, Sieber I, Beckert E, Steinkopf R, Gengenbach U and Yi A Y 2014 Fabrication of microinjection-molded miniature freeform Alvarez lenses Appl. Opt. 53 4248-55

    [190] [190] Zhang H Y, Zhang N, Han W, Gilchrist M D and Fang F Z 2021 Precision replication of microlens arrays using variotherm-assisted microinjection moulding Precis. Eng. 67 248-61

    [191] [191] Lu Y J, Luo W, Wu X Y, Xu B, Wang C J, Li J J and Li L J 2020 Fabrication of micro-structured LED diffusion plate using efficient micro injection molding and micro-ground mold core Polymers 12 1307

    [192] [192] Zhang Y Y, Liang R G, Spires O J, Yin S H, Yi A and Milster T D 2020 Precision glass molding of diffractive optical elements with high surface quality Opt. Lett. 45 6438-41

    [193] [193] Schaub M, Schwiegerling J, Fest E C, Symmons A and Shepard R H 2011 Molded Optics: Design and Manufacture (Boca Raton, FL: CRC Press)

    [194] [194] He P, Li L K, Li H, Yu J F, Lee L J and Yi A Y 2014 Compression molding of glass freeform optics using diamond machined silicon mold Manuf. Lett. 2 17-20

    [195] [195] Gurganus D, Owen J D, Dutterer B S, Novak S, Symmons A and Davies M A 2018 Precision glass molding of freeform optics Proc. SPIE 10742 107420Q

    [196] [196] Gurganus D, Novak S, Symmons A and Davies M A 2019 Precision glass molding of freeform optics Optical Design and Fabrication 2019 (Freeform, OFT) (Washington, DC: Optica Publishing Group) p JW1A.4

    [197] [197] Zhang L C and Liu W D 2017 Precision glass molding: toward an optimal fabrication of optical lenses Front. Mech. Eng. 12 3-17

    [198] [198] Ristok S, Flad P and Giessen H 2022 Atomic layer deposition of conformal anti-reflective coatings on complex 3D printed micro-optical systems Opt. Mater. Express 12 2063-71

    [199] [199] Bielawny A 2019 Reflectors in lighting design: reflector-based non-imaging optics for lighting applications Adv. Opt. Technol. 8 469-81

    [200] [200] Thetford A 1969 A method of designing three-layer anti-reflection coatings Opt. Acta 16 37-43

    [201] [201] Piegari A and Flory F 2018 Optical Thin Films and Coatings: From Materials to Applications 2nd edn (Duxford: Woodhead Publishing, an imprint of Elsevier)

    [202] [202] Aitchison B and Cumbo M J 2017 Novel optical coating technology for freeform and conformal optics Optical Design and Fabrication 2017 (Freeform, IODC, OFT) (Denver, CO: Optica Publishing Group) p FTh3B.5

    [203] [203] Paul P, Pfeiffer K and Szeghalmi A 2020 Antireflection coating on PMMA substrates by atomic layer deposition Coatings 10 64

    [204] [204] Whitehouse D J 1994 Handbook of Surface Metrology (Bristol: Institute of Physics Publishing)

    [205] [205] International Organization for Standardization (ISO) 1996 Geometrical product specifications (GPS)—surface texture: profile method—nominal characteristics of contact (stylus) instruments (available at: www.iso.org/ obp/ui/#iso:std:iso:3274:ed-2:v1:en)

    [206] [206] Taylor Hobson 2020 Form talysurf PGI freeform (available at: www.taylor-hobson.com/products/surfaceprofilers/optics-pgi/pgi-freeform)

    [207] [207] Wang Y M, Li Z X, Fu Z, Fang F Z and Zhang X D 2019 Radial scan form measurement for freeform surfaces with a large curvature using stylus profilometry Meas. Sci. Technol. 30 045010

    [208] [208] Spaan H, Donker R and Widdershoven I 2010 Isara 400: enabling ultra-precision coordinate metrology for large parts Proc. Euspen Int. Conf. (Delft: IBS Precision Engineering) pp 231-4

    [209] [209] Beutler A 2016 Strategy for a flexible and noncontact measuring process for freeforms Opt. Eng. 55 071206

    [210] [210] Scheiding S, Yi A Y, Gebhardt A, Li L, Risse S, Eberhardt R and Tünnermann A 2011 Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo Opt. Express 19 23938-51

    [211] [211] Sykora D M and de Groot P 2011 Instantaneous measurement Fizeau interferometer with high spatial resolution Proc. SPIE 8126 812610

    [212] [212] Arnold S M 1989 How to test an asphere with a computer generated hologram Proc. SIPE 1052 191-7

    [213] [213] Huang L, Wang T Y, Nicolas J, Vivo A, Polack F, Thomasset M, Zuo C, Tayabaly K, Kim D W and Idir M 2019 Two-dimensional stitching interferometry for self-calibration of high-order additive systematic errors Opt. Express 27 26940-56

    [214] [214] Ghim Y S, Rhee H G, Davies A, Yang H S and Lee Y W 2014 3D surface mapping of freeform optics using wavelength scanning lateral shearing interferometry Opt. Express 22 5098-105

    [215] [215] Fortmeier I, Stavridis M, Wiegmann A, Schulz M, Osten W and Elster C 2016 Evaluation of absolute form measurements using a tilted-wave interferometer Opt. Express 24 3393-404

    [216] [216] Ryle M 1972 The 5-km radio telescope at cambridge Nature 239 435-8

    [217] [217] Jackson N 2008 Principles of interferometry Jets from Young Stars II: Clues from High Angular Resolution Observations ed F Bacciotti, L Testi and E Whelan (Berlin: Springer) pp 193-218

    [218] [218] Jiang X Q, Wang K W, Gao F and Muhamedsalih H 2010 Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise Appl. Opt. 49 2903-9

    [219] [219] Huang L, Idir M, Zuo C and Asundi A 2018 Review of phase measuring deflectometry Opt. Lasers Eng. 107 247-57

    [220] [220] Kim D W et al 2021 Advances in reconfigurable optical design, metrology, characterization, and data analysis J. Phys. Photon. 3 022003

    [221] [221] Huang L, Xue J P, Gao B, McPherson C, Beverage J and Idir M 2016 Modal phase measuring deflectometry Opt. Express 24 24649-64

    [222] [222] Maldonado A V, Su P and Burge J H 2014 Development of a portable deflectometry system for high spatial resolution surface measurements Appl. Opt. 53 4023-32

    [223] [223] Davies A, Vann T, Evans C and Butkiewicz M 2017 Phase measuring deflectometry for determining 5 DOF misalignment of segmented mirrors Proc. SPIE 10373 103730H

    [224] [224] Su P, Parks R E, Wang L R, Angel R P and Burge J H 2010 Software configurable optical test system: a computerized reverse Hartmann test Appl. Opt. 49 4404-12

    [225] [225] Su P et al 2012 SCOTS: a reverse Hartmann test with high dynamic range for giant Magellan telescope primary mirror segments Proc. SPIE 8450 84500W

    [226] [226] Yin J F, Bai Q and Zhang B 2018 Methods for detection of subsurface damage: a review Chin. J. Mech. Eng. 31 41

    [227] [227] Stover J C 2012 Optical Scattering: Measurement and Analysis 3rd edn (Bellingham, WA: SPIE Press)

    [228] [228] Liao Z M, Cohen S J and Taylor J R 1994 Total internal reflection microscopy (TIRM) as a nondestructive subsurface damage assessment tool Proc. SPIE 2428 43-53

    [229] [229] Sheehan L M, Kozlowski M R and Camp D W 1998 Application of total internal reflection microscopy for laser damage studies on fused silica Proc. SPIE 3244 282-95

    [230] [230] Lee Y 2011 Evaluating subsurface damage in optical glasses J. Eur. Opt. Soc. 6 11001

    [231] [231] Li D, Tong Z, Jiang X Q, Blunt L and Gao F 2018 Calibration of an interferometric on-machine probing system on an ultra-precision turning machine Measurement 118 96-104

    [232] [232] Li D, Jiang X Q, Tong Z and Blunt L 2018 Kinematics error compensation for a surface measurement probe on an ultra-precision turning machine Micromachines 9 334

    [233] [233] Li D, Jiang X Q, Tong Z and Blunt L 2019 Development and application of interferometric on-machine surface measurement for ultraprecision turning process J. Manuf. Sci. Eng. 141 014502

    [234] [234] Tong Z, Zhong W B, Zeng W H and Jiang X Q 2021 Closed-loop form error measurement and compensation for FTS freeform machining CIRP Ann. 70 455-8

    [235] [235] Tong Z, Zeng W H, Zhong W B and Jiang X Q 2021 A closed-loop feature-based FTS patterning and characterisation of functional structured surfaces Surf. Topogr.: Metrol. Prop. 9 025012

    [236] [236] Zhou W C 2020 Fabrication and metrology of freeform optical elements PhD Thesis The Ohio State University, Columbus, OH

    [237] [237] Wolfs F, DeFisher S, Ross J and Wood K 2021 Challenges and best practices for manufacturing freeform optics Proc. SPIE 11889 118890Q

    [238] [238] Garrard K, Bruegge T, Hoffman J, Dow T and Sohn A 2005 Design tools for freeform optics Proc. SPIE 5874 58740A

    [239] [239] Aderneuer T, Fernandez O, Chaves J, Mohedano R and Ferrini R 2021 Design for manufacturing tools for free-form micro-optical arrays Proc. SPIE 11873 1187304

    [240] [240] Liu R X, Li Z X, Duan Y T and Fang F Z 2020 A design for a manufacturing-constrained off-axis four-mirror reflective system Appl. Sci. 10 5387

    [241] [241] Barbero S 2009 The Alvarez and Lohmann refractive lenses revisited Opt. Express 17 9376-90

    [242] [242] Smilie P J, Suleski T J, Dutterer B, Lineberger J L and Davies M A 2012 Design and characterization of an infrared Alvarez lens Opt. Eng. 51 013006

    [243] [243] Wilson A and Hua H 2019 Design and demonstration of a vari-focal optical see-through head-mounted display using freeform Alvarez lenses Opt. Express 27 15627-37

    [244] [244] Sieber I, Stiller P and Gengenbach U 2018 Design studies of varifocal rotation optics Opt. Eng. 57 125102

    Tools

    Get Citation

    Copy Citation Text

    Sumit Kumar, Zhen Tong, Xiangqian Jiang. Advances in the design and manufacturing of novel freeform optics[J]. International Journal of Extreme Manufacturing, 2022, 4(3): 32004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Topical Review

    Received: Feb. 11, 2022

    Accepted: --

    Published Online: Jan. 23, 2023

    The Author Email: Tong Zhen (Z.Tong@hud.ac.uk)

    DOI:10.1088/2631-7990/ac7617

    Topics