Optoelectronics Letters, Volume. 21, Issue 1, 13(2025)

Actively tunable electromagnetically induced transparency in hybrid Dirac-VO2 metamaterials

Ke DI... Meng XIE, Huarong XIA, Anyu CHENG, Yu LIU and Jiajia DU |Show fewer author(s)
References(34)

[1] [1] ZHANG S, GENOV D A, WANG Y, et al. Plasmon induced transparency in metamaterials[J]. Physical review letter, 2008, 101(4): 047401.

[2] [2] LI X Q, XU Y P, JING J B. Polarization-sensitive multi-frequency switches and high-performance slow light based on quadruple plasmon-induced transparency in a patterned graphene-based terahertz metamaterial[J]. Physical chemistry chemical physics, 25(5): 3820-3830.

[3] [3] CHEN S X, ZENG L, LI J Q, et al. Multiple plasmon-induced transparency based on black phosphorus and graphene for high-sensitivity refractive index sensing[J]. Optics express, 2022, 30(24): 44004-44017.

[4] [4] LU L D, WANG S, ZENG Z M, et al. Single silicon waveguide MRR based Fano resonance in the whole spectral bands[J]. Optoelectronics letters, 2022, 18(7): 398-403.

[5] [5] JIN J S, MA C J, ZHANG Y, et al. Study on all-optical tunable terahertz slow-light effects based on polarization-insensitive metamaterials[J]. Journal of optoelectronics·laser, 2023, 34(12): 1263-1270. (in Chinese)

[6] [6] LUO P, WEI W, LAN G, et al. Dynamical manipulation of a dual-polarization plasmon-induced transparency employing an anisotropic graphene-black phosphorus heterostructure[J]. Optics express, 2021, 29(19): 29690-29703.

[7] [7] LIU J J. Analysis of the terahertz characteristics of pesticide residue isomers[J]. Journal optical technology, 2020, 87: 440-444.

[8] [8] MA S, WANG X, LUO W, et al. Ultra-wide band reflective metamaterial wave plates for terahertz waves[J]. Europhysics letters, 2017, 117(3): 37007.

[9] [9] KLEINE-OSTMANN T, NAGATSUMA T. A review on terahertz communications research[J]. Journal of infrared millimeter and terahertz waves, 2011, 32(2): 143-171.

[10] [10] LIU Y T, ZHOU T, CAO J C. Terahertz spectral of enantiomers and racemic amino acids by time-domain-spectroscopy technology[J]. Infrared physics & technology, 2019, 96: 17-21.

[11] [11] WANG F, ZHANG Y, TIAN C, et al. Gate variable optical transitions in graphene[J]. Science, 2008, 320(5873): 206-209.

[12] [12] VAKIL A, ENGHETA N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291-1294.

[13] [13] YAN H, LOW T, ZHU W, et al. Damping path ways of mind infrared plasmons in graphene nanostructures[J]. Nature photonics, 2013, 7(5): 394-399.

[14] [14] XU X M, ZHANG C Y, JIANG J X, et al. Actively tunable and switchable electromagnetically induced transparency in hybrid metal-graphene metamaterials[J]. Materials research express, 2021, 8(2): 025802.

[15] [15] LI Q, SU H, ZHU J, et al. Active control of dual electromagnetically induced transparency in terahertz graphene-metal hybrid metasurfaces[J]. Frontiers in materials, 2022, 9: 966535.

[16] [16] YI G R, KONG W J, ZHANG Y Y, et al. The manipulation of bloch surface wave based on graphene[J]. Journal of optoelectronics·laser, 2024, 35(1): 15-20. (in Chinese)

[17] [17] LIANG T, GIBSON Q, ALI M N, et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2[J]. Nature materials, 2014, 14(3): 280-284.

[18] [18] WANG Q, LI C Z, GE S, et al. Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2[J]. Nano letters, 2018, 17(2): 834-841.

[19] [19] KOTOV O V, LOZOVIK Y E. Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films[J]. Physical review B, 2016, 93(23): 235417.

[20] [20] LIU G D, ZHAI X, MENG H Y, et al. Dirac semimetals based tunable narrowband absorber at terahertz frequencies[J]. Optics express, 2018, 26: 11471-11480.

[21] [21] TIMUSK T. Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity[J]. Physical review B condensed matter, 2013, 87(23): 3249-3253.

[22] [22] FANG J X, ZHU W, CAO L, et al. Hybrid dual-mode tunable polarization conversion metasurface based on graphene and vanadium dioxide[J]. Optics express, 2023, 31: 23095-23105.

[23] [23] HUANG J, LI J J, YANG Y, et al. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide[J]. Optics express, 2020, 28: 7018-7027.

[24] [24] FEI Z, RODIN A S, ANDREEV G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012, 487(7405): 82-85.

[25] [25] LIU Z M, ZHANG X, ZHANG Z B, et al. Simultaneous switching at multiple frequencies and triple plasmon-induced transparency in multilayer patterned graphene-based terahertz metamaterial[J]. New journal of physics, 2020, 22(8): 083006.

[26] [26] ZHOU F Q, WANG Y Q, ZHANG X J, et al. Dynamically adjustable plasmon-induced transparency and switching application based on bilayer graphene metamaterials[J]. Journal of physics D: applied physics, 2021, 54(5): 054002.

[27] [27] LI J Y, WENG J, LI J Q, et al. Dynamic manipulation of plasmon induced transparency with parallel-orthometric graphene strips structure[J]. Results in physics, 2022, 40: 105816.

[28] [28] ZHU J, XIONG J Y. Tunable terahertz graphene metamaterial optical switches and sensors based on plasma-induced transparency[J]. Measurement, 2023, 220: 113302.

[29] [29] WU X, QUAN B, PAN X, et al. Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor[J]. Biosensors & bioelectron, 2013, 42: 626-631.

[30] [30] WEI Z, LI X N, ZHONG N. Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device[J]. Plasmonics, 2017, 12: 641-647.

[31] [31] ZHU L, LI H D, DONG L, et al. Dual-band electromagnetically induced transparency terahertz metamaterial sensor[J]. Optical material express, 2021, 11: 2109-2121.

[32] [32] GAO L, FENG C, LI Y, et al. Actively controllable terahertz metal-graphene metamaterial based on electromagnetically induced transparency effect[J]. Nanomaterials, 2022, 12(20): 3672.

[33] [33] SHANG G Q, CHEN Z, YANG H, et al. Design of ultra-narrow band graphene refractive index sensor[J]. Sensors, 2022, 22(17): 6483.

[34] [34] TAI G, NI B, ZHOU X, et al. Actively tunable electromagnetically induced transparency effect and its high-performance sensing application based on asymmetrical graphene cutting line resonators in the low terahertz region[J]. Optical quantum electronics, 2023, 55: 317.

Tools

Get Citation

Copy Citation Text

DI Ke, XIE Meng, XIA Huarong, CHENG Anyu, LIU Yu, DU Jiajia. Actively tunable electromagnetically induced transparency in hybrid Dirac-VO2 metamaterials[J]. Optoelectronics Letters, 2025, 21(1): 13

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Received: Nov. 4, 2023

Accepted: Jan. 24, 2025

Published Online: Jan. 24, 2025

The Author Email:

DOI:10.1007/s11801-025-3239-1

Topics