High Power Laser and Particle Beams, Volume. 33, Issue 8, 081003(2021)
Research progress of adaptive optics in wireless optical communication system for Xi’an University of Technology
[2] Babcock H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 65, 229-236(1953).
[7] Fried D L. Adaptive optics topical issue[J]. Journal of the Optical Society of America A, 67, 422(1977).
[8] Tyson R K. Adaptive optics and ground-to-space laser communications[J]. Applied Optics, 35, 3640-3646(1996).
[9] Tyson R K. Bit-error rate for free-space adaptive optics laser communications[J]. Journal of the Optical Society of America A, 19, 753-758(2002).
[10] Tyson R K, Canning D E, Tharp J S. Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results[J]. Optical Engineering, 44, 096002(2005).
[11] [11] Wilks S C, Mris J R, Brase J M, et al. Modeling of adaptive opticsbased freespace communications systems[C]Proceedings Volume 4821, FreeSpace Laser Communication Laser Imaging II. 2002, 4821: 121128.
[12] [12] Thompson C A, Kartz M W, Flath L M, et al. Free space optical communications utilizing MEMS adaptive optics crection[C]Proceedings Volume 4821, FreeSpace Laser Communication Laser Imaging II. 2002, 4821: 129138.
[13] Weyrauch T, Vorontsov M A. Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications[J]. Applied Optics, 44, 6388-6401(2005).
[14] Weyrauch T, Vorontsov M A. Free-space laser communications with adaptive optics: atmospheric compensation experiments[J]. Journal of Optical and Fiber Communications Reports, 1, 355-379(2004).
[15] Wright M W, Roberts J E, Farr W H, et al. Improved optical communications performance combining adaptive optics and pulse position modulation[J]. Optical Engineering, 47, 016003(2008).
[16] [16] Hemmati H, Chen Y J, Crossfield I. Telescope wavefront aberration compensation with a defmable mirr in an adaptive optics system[C]Proceedings of SPIE, FreeSpace Laser Communication Technologies XVIII. 2006, 6105: 123127.
[17] [17] Wilson K E, Wright M W, Lee S, et al. Adaptive optics f daytime deep space laser communications from Mars[C]Digest of the LEOS Summer Topical Meeting. 2005: 1920.
[18] [18] Boson D M, Biswas A, Edwards B L. MLCD: Overview of NASA’s Mars laser communications demonstration system[C]Proceedings of SPIE, FreeSpace Laser Communication Technologies XVI. 2004, 5338: 1628.
[19] [19] Stewart J B, Murphy D V, Moes J D, et al. Comparing adaptive optics approaches f NASA LCRD ground station #2[C]Proceedings of SPIE, FreeSpace Laser Communication Atmospheric Propagation XXV. 2013, 8610: 86100M.
[20] Wright M W, Morris J F, Kovalik J M, et al. Adaptive optics correction into single mode fiber for a low earth orbiting space to ground optical communication link using the OPALS downlink[J]. Optics Express, 23, 33705-33712(2015).
[21] [21] Juarez J C, Young D W, Sluz J E, et al. Freespace optical channel propagation tests over a 147km link[C]Proceedings of SPIE, Atmospheric Propagation VIII. 2011, 8038: 80380B.
[22] [22] Heine F, Kämpfner H, Czichy R, et al. Optical intersatellite communication operational[C]Milcom 2010 Military Communications Conference. 2010: 15831887.
[23] [23] Sodnik Z, Armengol J P, Czichy R H, et al. Adaptive optics ESA’s optical ground station[C]Proceedings of SPIE, FreeSpace Laser Communications IX. 2009, 7464: 746406.
[24] [24] Berkefeld T, Soltau D, Czichy R, et al. Adaptive optics f satellitetoground laser communication at the 1m telescope of the ESA Optical Ground Station, Tenerife, Spain[C]Proceedings of SPIE, Adaptive Optics Systems II. 2010, 7736: 77364C.
[25] [25] Gregy M, Troendle D, Muehlnikel G, et al. Three years coherent space to ground links: perfmance results outlook f the optical ground station equipped with adaptive optics[C]Proceedings of SPIE, Freespace Laser Communication Atmospheric Propagation XXV. 2013: 746406.
[26] [26] Arimoto Y, Toyoshima M, Toyoda M, et al. Preliminary result on laser communication experiment using (ETSVI)[C]Proceedings of SPIE, FreeSpace Laser Communication Technologies VII. 1995, 2381: 151158.
[27] [27] Kudielka K H, Hayano Y, Klaus W, et al. Lowder adaptive optics system f freespace lasercom: design perfmance analysis[C]Proceedings of the 2nd International Wkshop on Adaptive Optics f Industry Medicine. 2015.
[28] [28] Petit C, Vedrenne N, Michau V, et al. Adaptive optics results with SOTA[C]2015 IEEE International Conference on Space Optical Systems Applications. 2016: 17.
[29] Hashmi A J, Eftekhar A A, Adibi A, et al. Analysis of adaptive optics-based telescope arrays in a deep-space inter-planetary optical communications link between Earth and Mars[J]. Optics Communications, 333, 120-128(2014).
[30] [30] Pasupathi T, Selvi J A V, Samuel J N. Mitigation of lowder atmospheric turbulent effects using sensless adaptive optics in terrestrial free space optical communication[C]2016 International Conference on Emerging Trends in Engineering, Technology Science (ICETETS). 2016.
[31] Carrizo C E, Calvo R M, Belmonte A. Proof of concept for adaptive sequential optimization of free-space communication receivers[J]. Applied Optics, 58, 5397-5403(2019).
[32] Brady A, Rössler C, Leonhard N, et al. Validation of pre-compensation under point-ahead-angle in a 1 km free-space propagation experiment[J]. Optics Express, 27, 17840-17850(2019).
[33] Baykal Y, Gökçe M, Ata Y. Application of adaptive optics on bit error rate of
[34] Toselli I, Gladysz S. Improving system performance by using adaptive optics and aperture averaging for laser communications in oceanic turbulence[J]. Optics Express, 28, 17347-17361(2020).
[35] Paillier L, Le Bidan R, Conan J M, et al. Space-ground coherent optical links: ground receiver performance with adaptive optics and digital phase-locked loop[J]. Journal of Lightwave Technology, 38, 5716-5727(2020).
[36] Ata Y, Korotkova O. Adaptive optics correction in natural turbulent waters[J]. Journal of the Optical Society of America A, 38, 587-594(2021).
[37] Osborn J, Townson M J, Farley O J D, et al. Adaptive optics pre-compensated laser uplink to LEO and GEO[J]. Optics Express, 29, 6113-6132(2021).
[38] Leonhard N, Berlich R, Minardi S, et al. Real-time adaptive optics testbed to investigate point-ahead angle in pre-compensation of Earth-to-GEO optical communication[J]. Optics Express, 24, 13157-13172(2016).
[39] Chu Xiuxiang, Qiao Chunhong, Feng Xiaoxing, et al. Propagation of Gaussian-Schell beam in turbulent atmosphere of three-layer altitude model[J]. Applied Optics, 50, 3871-3878(2011).
[49] Li Jiawei, Zhang Zhen, Gao Jianqiu, et al. Bandwidth of adaptive optics system in atmospheric coherent laser communication[J]. Optics Communications, 359, 254-260(2016).
[51] Liu Wei, Shi Wenxiao, Wang Bin, et al. Free space optical communication performance analysis with focal plane based wavefront measurement[J]. Optics Communications, 309, 212-220(2013).
[53] Liu Wei, Shi Wenxiao, Yao Kainan, et al. Fiber coupling efficiency analysis of free space optical communication systems with holographic modal wave-front sensor[J]. Optics & Laser Technology, 60, 116-123(2014).
[54] Li Zhaokun, Cao Jingtai, Zhao Xiaohui, et al. Combinational-deformable-mirror adaptive optics system for atmospheric compensation in free space communication[J]. Optics Communications, 320, 162-168(2014).
[55] Liu Wei, Yao Kainan, Huang Danian, et al. Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the greenwood frequency[J]. Optics Express, 24, 13288-13302(2016).
[56] Ren Yongxiong, Xie Guodong, Huang Hao, et al. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence[J]. Optics Letters, 39, 2845-2848(2014).
[57] Cao Jingtai, Zhao Xiaohui, Li Zhaokun, et al. Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication[J]. Optik, 125, 6142-6147(2014).
[58] Liu Chao, Chen Shanqiu, Li Xinyang, et al. Performance evaluation of adaptive optics for atmospheric coherent laser communications[J]. Optics Express, 22, 15554-15563(2014).
[59] Liu Chao, Chen Mo, Chen Shanqiu, et al. Adaptive optics for the free-space coherent optical communications[J]. Optics Communications, 361, 21-24(2016).
[60] Huang Jian, Deng Ke, Liu Chao, et al. Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication[J]. Optics Express, 22, 16000-16007(2014).
[61] Huang Jian, Mei Haiping, Deng Ke, et al. Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation[J]. Optics Communications, 356, 574-577(2015).
[62] Li Ming, Cvijetic M. Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction[J]. Applied Optics, 54, 1453-1462(2015).
[63] Li Ming, Gao Wenbo, Cvijetic M. Slant-path coherent free space optical communications over the maritime and terrestrial atmospheres with the use of adaptive optics for beam wavefront correction[J]. Applied Optics, 56, 284-297(2017).
[64] Chen Mo, Liu Chao, Xian Hao. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics[J]. Applied Optics, 54, 8722-8276(2015).
[65] Zhao Shengmei, Wang Le, Zou Li, et al. Both channel coding and wavefront correction on the turbulence mitigation of optical communications using orbital angular momentum multiplexing[J]. Optics Communications, 376, 92-98(2016).
[66] Chen Mo, Liu Chao, Rui Daoman, et al. Experimental results of 5-Gbps free-space coherent optical communications with adaptive optics[J]. Optics Communications, 418, 115-119(2018).
[68] Yang Leqiang, Yao Kainan, Wang Jianli, et al. Performance analysis of 349-element adaptive optics unit for a coherent free space optical communication system[J]. Scientific Reports, 9, 13150(2019).
[69] Chang Huan, Yin Xiaoli, Cui Xiaozhou, et al. Performance analysis of adaptive optics with a phase retrieval algorithm in orbital-angular-momentum-based oceanic turbulence links[J]. Applied Optics, 58, 6085-6090(2019).
[70] Rui Daoman, Liu Chao, Chen Mo, et al. Probability enhancement of fiber coupling efficiency under turbulence with adaptive optics compensation[J]. Optical Fiber Technology, 60, 102343(2020).
[71] Chang Huan, Yin Xiaoli, Yao Haipeng, et al. Low-complexity adaptive optics aided orbital angular momentum based wireless communications[J]. IEEE Transactions on Vehicular Technology, 1, 1-13(2020).
[72] Gu Haijun, Liu Meiqi, Liu Haoyu, et al. An algorithm combining convolutional neural networks with SPGD for SLAO in FSOC[J]. Optics Communications, 475, 126243(2020).
[73] Jiang Lun, Dai Zhengshuang, Yu Xin, et al. Experimental demonstration of a single-mode fiber coupling over a 1 km urban path with adaptive optics[J]. Journal of Russian Laser Research, 42, 363-370(2021).
[74] Zhang Shen, Wang Rui, Wang Yukun, et al. Extending the detection and correction abilities of an adaptive optics system for free-space optical communication[J]. Optics Communications, 482, 126571(2021).
[75] Chen Mo, Liu Chao, Rui Daoman, et al. Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle[J]. Optics Express, 26, 4230-4242(2018).
[76] Liu Wei, Yao Kainan, Chen Lu, et al. Performance analysis of coherent free space optical communications with sequential pyramid wavefront sensor[J]. Optics & Laser Technology, 100, 332-341(2018).
[78] [78] Ke Xizheng, Deng Lijun. They of partially coherent optical transmission in wireless optical communication[M]. Beijing: Science Press, 2016
[79] [79] Ke Xizheng, Yin Zhiyun. Coding they in wireless laser communication system[M]. Beijing: Science Press, 2009
[80] [80] Ke Xizheng, Deng Lijun. Wireless laser communication[M]. Beijing: Science Press, 2016
[81] [81] Ke Xizheng, Chen Juan, Deng Lijun. Space time coding they f wireless optical MIMO systems[M]. Beijing: Science Press, 2014
[82] [82] Ke Xizheng. Principle application of wireless optical thogonal frequency division multiplexing[M]. Beijing: Science Press, 2017
[83] [83] Ke Xizheng, Wu Jiali. Principle application of wireless optical coherent communication[M]. Beijing: Science Press, 2019
[84] [84] Ke Xizheng. They of UV selfganizing wk[M]. Beijing: Science Press, 2011
[85] [85] Ke Xizheng, Wang Jiao. Generation, transmission, detection application of vtex beam[M]. Beijing: Science Press, 2018
[86] [86] Ke Xizheng, Chen Jinni. Heterodyne detection system method f wireless laser communication: CN103051375A[P]. 20130417
[88] Wu Jiali, Ke Xizheng. Development of adaptive optical correction and polarization control modules for 10-km free-space coherent optical communications[J]. Journal of Modern Optics, 67, 189-195(2020).
[89] [89] Ke Xizheng, Yang Shangjun, Wang Jiao. Experimental study of free space coherent optical communication on 1km[C]10th International Conference on Advanced Infocomm Technology (ICAIT). Stockholm, Sweden: IEEE, 2018: 6165.
[90] Ke Xizheng, Chen Xiaozhan. Correcting wavefront distortion of dual-wavelength beams due to atmospheric turbulence with a correction coefficient[J]. Optics and Photonics Journal, 10, 64-77(2020).
[91] Ke Xizheng, Tan Zhenkun. Effect of angle-of-arrival fluctuation on heterodyne detection in slant atmospheric turbulence[J]. Applied Optics, 57, 1083-1090(2018).
[92] Tan Zhenkun, Ke Xizheng. Analysis of a heterodyne detection system affected by irradiance and phase fluctuations in slant atmospheric turbulence[J]. Applied Optics, 57, 9596-9603(2018).
[93] [93] Boyer C, Michau V, Rousset G. Adaptive optics: Interaction matrix measurements realtime control algithms f the COMEON project[C]Proceedings Volume 1237, Amplitude Intensity Spatial Interferometry. 1990, 1237: 6381.
[94] Kasper M, Fedrigo E, Looze D P, et al. Fast calibration of high-order adaptive optics systems[J]. Journal of the Optical Society of America A, 21, 1004-1008(2004).
[95] Paschall R N, Anderson D J. Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements[J]. Applied Optics, 32, 6347-6358(1993).
[96] [96] Zhang Danyu. Research on wavefront disttion control experiment of adaptive optics[D]. Xi’an: Xi’an University of Technology, 2020
[97] Polo A, Haber A, Pereira S F, et al. An innovative and efficient method to control the shape of push-pull membrane deformable mirror[J]. Optics Express, 20, 27922-27932(2012).
[98] Haber A, Polo A, Smith C S, et al. Iterative learning control of a membrane deformable mirror for optimal wavefront correction[J]. Applied Optics, 52, 2363-2373(2013).
[100] Ke Xizheng, Zhang Danyu. Fuzzy control algorithm for adaptive optical systems[J]. Applied Optics, 58, 9967-9975(2019).
[102] [102] Yang Ke. Research on wavefront sensing technology with computational light field imaging[D]. Xi’an: Xi’an University of Technology, 2019
[104] [104] Ke Xizheng, Zhang Yunfeng. Wavefrontfree sensing adaptive system method of improving convergence rate by using system: CN110365404A[P]. 20191022
[105] [105] Li Mei. Experimental study on eigenmode method crection of beam disttion[D]. Xi’an: Xi’an University of Technology, 2020
[107] Ke Xizheng, Li Mei. Laser beam distorted wavefront correction based on deformable mirror eigenmodes[J]. Optical Engineering, 58, 126101(2019).
[110] Zommer S, Ribak E N, Lipson S G, et al. Simulated annealing in ocular adaptive optics[J]. Optics Letters, 31, 939-941(2006).
[112] [112] Wu Jiali. Research of the coherent optical communication system with wavefront sensless[D]. Xi’an: Xi’an University of Technology, 2018
[113] Vorontsov M A. Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion[J]. Journal of the Optical Society of America A, 19, 356-368(2002).
[115] [115] Tan Zhenkun. Effects of facts on the perfmance of heterodyne detection experimental investigation in wireless optical communication[D]. Xi’an: Xi’an University of Technology, 2019
[116] [116] Wang Xiayao. Research on adaptive optics crection technique of vtex beams[D]. Xi’an: Xi’an University of Technology, 2018
[118] [118] Cui Namei. Experimental research on crecting wavefront disttion of vtex beam by phase diversity method[D]. Xi’an: Xi’an University of Technology, 2020
[119] Ke Xizheng, Cui Namei. Experimental research on phase diversity method for correcting vortex beam distortion wavefront[J]. Applied Physics B, 126, 66(2020).
[121] [121] Kong Yingxiu. Wavefront crection technique of spatial coherent optical communication with LCSLM[D]. Xi’an: Xi’an University of Technology, 2019
[126] [126] Ke Xizheng, Chen Wei. Space optic coupling detection device based on optical fiber arrays: CN103209022A[P]. 20130717
[127] [127] Luo Jing. Research on automatic alignment technology of space optical fiber coupling[D]. Xi’an: Xi’an University of Technology, 2018
[128] Ke Xizheng, Yin Benkang. Experimental research on automatic alignment and control algorithm of spatial light-fiber coupling[J]. International Journal of Optics, 2021, 8481146(2021).
[129] [129] Ke Xizheng, Zhang Xutong. Method of improving singlemode optical fiber coupling efficiency through mode conversion: CN110133803A[P]. 20190816
[130] [130] Zhang Xutong. Research on mode conversion to improve coupling efficiency on singlemode fiber[D]. Xi’an: Xi’an University of Technology, 2020
[131] Ke Xizheng, Zhang Xutong. Conversion of free-space optical path mode by spatial light modulator[J]. Optical Engineering, 59, 016109(2020).
Get Citation
Copy Citation Text
Xizheng Ke, Shangjun Yang, Jiali Wu, Xirui Zhong. Research progress of adaptive optics in wireless optical communication system for Xi’an University of Technology[J]. High Power Laser and Particle Beams, 2021, 33(8): 081003
Category: Laser Atmosphere Propagation?Overview
Received: May. 1, 2021
Accepted: --
Published Online: Sep. 3, 2021
The Author Email: Yang Shangjun (383965834@qq.com)