Optics and Precision Engineering, Volume. 20, Issue 1, 88(2012)
Identification and control of dynamic modeling for piezoceramic actuator
[1] [1] BANKS H T, SMITH R C. Hysteresis modeling in smart material systems[J]. Appl. Mech. Eng., 2000(5): 31-45.
[2] [2] TAN X, BARAS J S. Modeling and control of hysteresis in magnetostrictive actuators[J].Automatica, 2004,40(9): 1469-1480.
[3] [3] MAYEYERGOYZ I D. Mathematical model of hysteresis [J].IEEE Transa. on Magnet., 1986,22(5): 603-608.
[4] [4] LIU X D,LIU Y,LI L.A new kind of generalized Preisach hysteresis model and its identification based on the neural network[J]. Transactions of Beijing Institute of Technology, 2007,27(2): 135-138.(in Chinese)
[5] [5] JILES D, LATHERTON D. Ferromagnteic hysteresis[J]. IEEE Trans. Magnet., 1983,19(5): 2183-2185.
[6] [6] GOLDFARB M, CELANOVIC N. A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators[J].ASME J. Dynamic Syst. Measure. Control, 1997,119(3): 479-485.
[7] [7] WEN Y K. Method for random vibration of hysteretic system[J]. ASCE J. Eng. Mech., 1976,120: 2299-2325.
[8] [8] ANG W T, GARM′ON F A. Modeling rate-dependent hysteresis in piezoelectric actuators[C].Proceedings of the 2003 IEEE/RSJ Intl. Confernece on Intelligent Robots and Systems, Las Vegas, NV,October, 2003.
[9] [9] DONG R, TAN Y, CHEN H, et al.. A neural networks based model for rate-dependent hysteresis for piezoceramic actuators[J].Sensors and Actuators A: Physical, 2008,143(2): 370-376.
[10] [10] DONG R, TAN Y. Modeling hysteresis in piezoceramic actuators using modified Prandtl-Ishlinskii model[J]. Physica B, 2009,404(8-11): 1336-1342.
[11] [11] OH J H, DENNIS S. Bemstein identification of rate-dependent hysteresis using the SE milinear Duhem model[C]. Proceeding of the American Control Conference,2004: 4776-4781.
[12] [12] BANKS H T, SMITH R C. Hysteresis modeling in smart material systems[J]. Appl. Mech. Eng., 2000,5: 31-45.
[13] [13] OH J, BERNSTEIN D S. SE milinear Duhem model for rate-independent and rate-dependent hysteresis[J]. IEEE Trans. Autom. Control, 2005,50(5): 631-645.
[14] [14] SU C Y, STEPANENKO Y, SVOBODA J, et al.. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis[J]. IEEE Trans. Automat. Control, 2000,45(12): 2427-2432.
[15] [15] FENG Y, RABBATH CA, CHAI T, et al.. Robust adaptive control of systems with hysteretic nonlinearities: a Duhem hysteresis modelling approach [J].IEEE Africom, 2009: 1-6.
[16] [16] HU H. Compensation of hysteresis in piezoceramic actuators and control of nanopositioning system[D].Canada: P.H.D Thesis of University of Toronto, 2003.
[18] [18] ZHANG X L, TAN Y H, SU M Y. Modeling of hysteresis in piezoelectric actuators using neural net-works[J].Mechanical and Signal Processiong, 2009,23(8): 2699-2711.
[19] [19] ZHANG D,ZHANG CH J,WEI Q.Dynamic hystersis model of piezopositioning stage[J].Opt.Precision Eng.,2009,17(3): 551-556.(in Chinese)
[22] [22] SUN Y SH.Approximation of Functions[M].Beijing: Publishing House of Beijing Normal University, 1989.
[23] [23] LJUNG V L. System Identification Theory for the User[M]. Second Edition. Prentice Hall,1999.
[24] [24] COLEMAN B D, HODGDON M L. A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials[J]. International J. Eng. Sci., 1986,24: 897-919.
Get Citation
Copy Citation Text
CHEN Hui, TAN Yong-hong, ZHOU Xing-peng, ZHANG Ya-hong, DONG Rui-li. Identification and control of dynamic modeling for piezoceramic actuator[J]. Optics and Precision Engineering, 2012, 20(1): 88
Category:
Received: Aug. 5, 2011
Accepted: --
Published Online: Feb. 14, 2012
The Author Email: Hui CHEN (glchenhui@126.com)