Spectroscopy and Spectral Analysis, Volume. 42, Issue 5, 1372(2022)

Research on Prediction Model of Soil Nitrogen Content Based on Encoder-CNN

Rong-hua JI1,*... Ying-ying ZHAO2,2;, Min-zan LI2,2; and Li-hua ZHENG2,2; *; |Show fewer author(s)
Author Affiliations
  • 11. Yantai Research Institute of China Agricultural University, Yantai 264670, China
  • 22. Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China
  • show less
    Figures & Tables(10)
    Correlation between soil nitrogen content and self-collected spectrum and its differential spectrum(a): The original spectrum; (b): The first order differential spectrum; (c): The second order differential spectrum
    The basic structure of auto-encoder
    The schematic diagram of CNN network structure
    Changes of evaluation indexes of CNN-3 model(a): Coefficient of determination; (b): Root-mean-square error; (c): Relative percent deviation
    The model prediction performance on Heilongjiang data set (900 iterations)
    • Table 1. List of strongly correlated wavebands for spectral data

      View table
      View in Article

      Table 1. List of strongly correlated wavebands for spectral data

      光谱数据强相关波段/nm
      原始光谱918.7~1 878.7, 2 047.9~2 378.5
      一阶微分光谱1 356.0~1 448.4, 1 624.4~1 628.5,
      1 710.2~1 726.1,1 733~1 742.3,
      1 768.5~1 830.9, 1 906.3~1 931.9,
      2 149.8~2 274.2, 2 294.3~2 298.4,
      2 314.8~2 327.3
      二阶微分光谱1 412.2~1 427.6, 1 726.1~1 740,
      1 742.3~1 771, 1 920.4~1 931.9,
      1 997.4~2 025.5, 2 128.6~2 374.2,
      2 427.5~2 441.2, 2 450.5~2 459.8,
      2 473.9~2 478.6
    • Table 2. Characteristic bands and model input wavelength selection

      View table
      View in Article

      Table 2. Characteristic bands and model input wavelength selection

      特征波段/nm波长间隔/nm波长数量
      1 356.0~1 448.41.562
      1 624.4~1 628.52.03
      1 710.2~1 830.92.451
      2 128.6~2 374.23.864
    • Table 3. Spectral reconstruction effect of different automatic encoder structures

      View table
      View in Article

      Table 3. Spectral reconstruction effect of different automatic encoder structures

      结构
      编号
      网络名称神经元个数R2
      输入层隐含层1隐含层2隐含层3
      1AutoEnc1
      AutoEnc2
      18030
      60
      -
      -
      -
      -
      0.638
      0.485
      2AutoEnc3
      AutoEnc4
      AutoEnc5
      18060
      90
      120
      30
      30
      30
      -
      -
      -
      0.802
      0.857
      0.952
      3AutoEnc6
      AutoEnc7
      AutoEnc8
      180120
      120
      120
      60
      60
      90
      -
      30
      30
      0.910
      0.999
      0.951
    • Table 4. The parameters setting of convolution layers

      View table
      View in Article

      Table 4. The parameters setting of convolution layers

      网络层编号网络结构1网络结构2
      CNN-1CNN-2CNN-1CNN-2
      数量尺寸数量尺寸数量尺寸数量尺寸
      卷积层
      (卷积核)
      15127×75127×75127×75127×7
      2643×35121×15121×15121×1
      3643×31283×31283×31283×3
      4643×31281×11281×11281×1
      5641×12561×12561×12561×1
      6641×1643×3643×3643×3
      7641×1641×1641×1641×1
      全连接层
      (神经元)
      164-64-64-256-
      264-64-64-128-
    • Table 5. The prediction performance of four models on different datasets(unit of RMSE: g·kg-1)

      View table
      View in Article

      Table 5. The prediction performance of four models on different datasets(unit of RMSE: g·kg-1)

      网络
      结构
      模型LUCAS数据集黑龙江数据集
      训练集测试集
      R2RMSERPDR2RMSERPDR2RMSERPD
      1CNN-10.860.792.620.850.862.540.616.371.61
      CNN-20.890.702.980.880.742.930.705.601.83
      2CNN-30.920.593.510.900.683.210.734.812.13
      CNN-40.930.533.840.940.514.050.785.341.92
    Tools

    Get Citation

    Copy Citation Text

    Rong-hua JI, Ying-ying ZHAO, Min-zan LI, Li-hua ZHENG. Research on Prediction Model of Soil Nitrogen Content Based on Encoder-CNN[J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1372

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 5, 2021

    Accepted: --

    Published Online: Nov. 10, 2022

    The Author Email: JI Rong-hua (jessic1212@cau.edu.cn)

    DOI:10.3964/j.issn.1000-0593(2022)05-1372-06

    Topics