Journal of Atmospheric and Environmental Optics, Volume. 8, Issue 1, 66(2013)
Research on Measurement of Human Ocular Off-Axis Aberrations Based on Hartmann-Shack Sensor
[1] [1] Liang J Z, Grimm B, Goelz S, et al. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor [J]. J. Opt. Soc. Am. A, 1994, 11(7): 1949-1957.
[2] [2] Cheng X, Thibos L N, Bradley A. Estimating visual quality from wavefront aberration measurements [J]. J. Refract. Surg., 2003, 19(5): S579-S584.
[3] [3] Roberts C. Biomechanics of the cornea and wavefront-guided laser refractive surgery [J]. J. Refract. Surg., 2002, 18(5): S589-S592.
[4] [4] Wang Yang, Wang Zhaoqi, Guo Huanqing, et al. Impact of higher-order wavefront aberrations of human eyes on vision performance [J]. Acta Optica Sinica, 2005, 25(11): 1519-1525(in Chinese).
[5] [5] Jiang Wenhan. Adaptive optics correction in real time for dynamic wave-front errors [J]. Acta Optica Sinica, 1988, 8(5): 441-447(in Chinese).
[7] [7] Atchison D A, Scott D H. Monochromatic aberrations of human eyes in the horizontal visual field [J]. J. Opt. Soc. Am. A, 2002, 19(11): 2180-2184.
[8] [8] Atchison D. Off-axis aberrations of human eyes [J]. The South African Optometrist, 2003, 62(3): 119-122.
[9] [9] Escudero-Sanz I, Navarro R. Off-axis aberrations of a wide-angle schematic eye model [J]. J. Opt. Soc. Am. A, 1999, 16(8): 1881-1891.
[10] [10] Xu A C, Chen J B, Zhang P M, et al. Information fusion method for ocular aberrations measurement based on subjective visual compensation [J]. Optik- Int. J. Light Electron Opt., 2011, 122(14): 1240-1244.
[11] [11] Xu A C, Chen J B, Zhang P M, et al. Combined method of objective and subjective measurement of ocular aberrations [J]. Key Eng. Mater., 2010, 426-427: 197-201.
[12] [12] Xu A C, Chen J B, Zhang P M, et al. Ocular aberrations measurement combined with subjective visual compensation [J]. Adv. Mater. Res., 2010, 136: 33-38
[13] [13] Wu J J, Chen J B, Xu A C, et al. Uncollimated light beam illumination during the ocular aberration detection and its impact on the measurement accuracy by using Hartmann-Shack wavefront sensor [C]. Proc. SPIE, 2009, 7508: 75080V-75080V-12.
[14] [14] Wu J J, Chen J B, Xu A C, et al. Novel laser beam collimation system with Hartmann-Shack wavefront sensor as a tool [C]. Proc. SPIE, 7656: 765648-765648-6.
[16] [16] Jiang Wenhan, Xian Hao, Shen Feng. Detector error of Hartmann-Shack sensor [J]. Chinese Journal of Quantum Electronics, 1998, 15(2): 218-227(in Chinese).
[17] [17] Wang J Y, Silva D E. Wave-front interpretation with Zernike polynomials [J]. Appl. Opt., 1980, 19(9): 1510-1518.
[18] [18] Huang D. Physics of Customized Corneal Aberration [A]. In: Customized Corneal Aberration [M]. Thorofare: SLACK, 2001: 51262.
[19] [19] Shen Jianxin, Zhou Rurong, Liao Wenhe. The principle of excimer laser aberration of correction system [J]. Chinese Journal of Biomedical Engineering, 2003, 22( 5): 410-417.
[20] [20] Southwell W H. Wave-front estimation from wave-front slope measurements [J]. J. Opt. Soc. Am., 1980, 70: 998-1006.
[21] [21] Noll R J . Zernike polynomials and atmospheric turbulence [J]. J. Opt. Soc. Am., 1976, 66(3): 207-211.
[22] [22] Fried D L. Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements [J]. J. Opt. Soc. Am., 1977, 67: 370-375.
[23] [23] Hugdin R H. Wave-front reconstruction for compensated imaging [J]. J. Opt. Soc. Am., 1977, 67: 375-378.
[24] [24] Lane R G, Tallon M. Wavefront reconstruction using a Shack-Hartmann sensor [J]. Appl. Opt., 1992, 31(32): 6902-6908.
Get Citation
Copy Citation Text
XU An-cheng, LU Xing-zhong, DING Li-hua. Research on Measurement of Human Ocular Off-Axis Aberrations Based on Hartmann-Shack Sensor[J]. Journal of Atmospheric and Environmental Optics, 2013, 8(1): 66
Category:
Received: Mar. 19, 2012
Accepted: --
Published Online: Jan. 24, 2013
The Author Email: An-cheng XU (jackyxac@163.com)