Bulletin of the Chinese Ceramic Society, Volume. 41, Issue 10, 3624(2022)

Research Progress on Nanoscale Network Reinforcement Methods of Silica Aerogels

SUN Qiang... FENG Junzong, JIANG Yonggang, LI Liangjun and FENG Jian |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(45)

    [2] [2] GIBIAT V, LEFEUVRE O, WOIGNIER T, et al. Acoustic properties and potential applications of silica aerogels[J]. Journal of Non-Crystalline Solids, 1995, 186: 244-255.

    [3] [3] ZHAO S Y, STOJANOVIC A, ANGELICA E, et al. Phase transfer agents facilitate the production of superinsulating silica aerogel powders by simultaneous hydrophobization and solvent- and ion-exchange[J]. Chemical Engineering Journal, 2020, 381: 122421.

    [5] [5] NG S, JELLE B P, SANDBERG L I C, et al. Experimental investigations of aerogel-incorporated ultra-high performance concrete[J]. Construction and Building Materials, 2015, 77: 307-316.

    [6] [6] TALEBI Z, SOLTANI P, HABIBI N, et al. Silica aerogel/polyester blankets for efficient sound absorption in buildings[J]. Construction and Building Materials, 2019, 220: 76-89.

    [7] [7] CHEN Y X, HENDRIX Y, SCHOLLBACH K, et al. A silica aerogel synthesized from olivine and its application as a photocatalytic support[J]. Construction and Building Materials, 2020, 248: 118709.

    [8] [8] MALEKI H. Recent advances in aerogels for environmental remediation applications: a review[J]. Chemical Engineering Journal, 2016, 300: 98-118.

    [9] [9] ULKER Z, ERKEY C. An emerging platform for drug delivery: aerogel based systems[J]. Journal of Controlled Release, 2014, 177: 51-63.

    [10] [10] SHIN D, KIM J, KIM C, et al. Scalable variable-index elasto-optic metamaterials for macroscopic optical components and devices[J]. Nature Communications, 2017, 8: 16090.

    [11] [11] PRAKASH S S, BRINKER C J, HURD A J. Silica aerogel films at ambient pressure[J]. Journal of Non-Crystalline Solids, 1995, 190(3): 264-275.

    [12] [12] ZHANG G H, DASS A, RAWASHDEH A M M, et al. Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization[J]. Journal of Non-Crystalline Solids, 2004, 350: 152-164.

    [13] [13] JIANG H T, LU Y L, HUANG W C, et al. Microstructural evolution and mechanical properties of the semisolid Al-4Cu-Mg alloy[J]. Materials Characterization, 2003, 51(1): 1-10.

    [15] [15] MULDER C A M, VAN LIEROP J G, FRENS G. Densification of SiO2-xerogels to glass by Ostwald ripening[J]. Journal of Non-Crystalline Solids, 1986, 82(1/2/3): 92-96.

    [16] [16] HREID S, NILSEN E, RANUM V, et al. Thermal and temporal aging of two step acid-base catalyzed silica gels in water/ethanol solutions[J]. Journal of Sol-Gel Science and Technology, 1997, 8(1/2/3): 153-157.

    [17] [17] VENKATESWARA RAO A, PARVATHY N N. Effect of gel parameters on monolithicity and density of silica aerogels[J]. Journal of Materials Science, 1993, 28(11): 3021-3026.

    [18] [18] WOIGNIER T, PHALIPPOU J, HDACH H, et al. Evolution of mechanical properties during the alcogel-aerogel-glass process[J]. Journal of Non-Crystalline Solids, 1992, 147/148: 672-680.

    [20] [20] YUAN B, DING S Q, WANG D D, et al. Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming[J]. Materials Letters, 2012, 75: 204-206.

    [21] [21] ZHANG H X, HE X D, HE F. Microstructure and physicochemical properties of ambient-dried SiO2 aerogels with K2Ti6O13 whisker additive[J]. Journal of Alloys and Compounds, 2009, 472(1/2): 194-197.

    [22] [22] WANG J, KUHN J, LU X. Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers[J]. Journal of Non-Crystalline Solids, 1995, 186: 296-300.

    [23] [23] LEE D, STEVENS P C, ZENG S Q, et al. Thermal characterization of carbon-opacified silica aerogels[J]. Journal of Non-Crystalline Solids, 1995, 186: 285-290.

    [24] [24] MULIK S, SOTIRIOU-LEVENTIS C, CHURU G, et al. Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization[J]. Chemistry of Materials, 2008, 20(15): 5035-5046.

    [25] [25] KARAMIKAMKAR S, NAGUIB H E, PARK C B. Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: a review[J]. Advances in Colloid and Interface Science, 2020, 276: 102101.

    [27] [27] GUO H Q, MEADOR M A B, MCCORKLE L, et al. Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5422-5429.

    [28] [28] LEVENTIS N, SOTIRIOU-LEVENTIS C, ZHANG G H, et al. Nanoengineering strong silica aerogels[J]. Nano Letters, 2002, 2(9): 957-960.

    [29] [29] MA H N, WANG B M, HAN J N, et al. Synthesis and physico-chemical properties of poly (methylmethacrylate)-modified silica aerogels by ambient pressure drying[J]. Nanoscience and Nanotechnology Letters, 2015, 7(11): 930-938.

    [30] [30] MEADOR M A B, FABRIZIO E F, ILHAN F, et al. Cross-linking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials[J]. Chemistry of Materials, 2005, 17(5): 1085-1098.

    [31] [31] ILHAN F, FABRIZIO E F, MCCORKLE L, et al. Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica[J]. Journal of Materials Chemistry, 2006, 16(29): 3046.

    [32] [32] CAPADONA L A, MEADOR M A B, ALUNNI A, et al. Flexible, low-density polymer crosslinked silica aerogels[J]. Polymer, 2006, 47(16): 5754-5761.

    [33] [33] SHAO Z D, WU G Y, CHENG X, et al. Rapid synthesis of amine cross-linked epoxy and methyl co-modified silica aerogels by ambient pressure drying[J]. Journal of Non-Crystalline Solids, 2012, 358(18/19): 2612-2615.

    [35] [35] JIANG L, KATO K, MAYUMI K, et al. One-pot synthesis and characterization of polyrotaxane-silica hybrid aerogel[J]. ACS Macro Letters, 2017, 6(3): 281-286.

    [36] [36] MALEKI H, MONTES S, HAYATI-ROODBARI N, et al. Compressible, thermally insulating, and fire retardant aerogels through self-assembling silk fibroin biopolymers inside a silica structure-an approach towards 3D printing of aerogels[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22718-22730.

    [37] [37] WANG L K, FENG J Z, JIANG Y G, et al. Polyvinylmethyldimethoxysilane reinforced methyltrimethoxysilane based silica aerogels for thermal insulation with super-high specific surface area[J]. Materials Letters, 2019, 256: 126644.

    [38] [38] REZAEI S, JALALI A, ZOLALI A M, et al. Robust, ultra-insulative and transparent polyethylene-based hybrid silica aerogel with a novel non-particulate structure[J]. Journal of Colloid and Interface Science, 2019, 548: 206-216.

    [39] [39] ZU G Q, SHIMIZU T, KANAMORI K, et al. Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying[J]. ACS Nano, 2018, 12(1): 521-532.

    [40] [40] ZU G Q, KANAMORI K, MAENO A, et al. Superflexible multifunctional polyvinylpolydimethylsiloxane-based aerogels as efficient absorbents, thermal superinsulators, and strain sensors[J]. Angewandte Chemie (International Ed in English), 2018, 57(31): 9722-9727.

    [41] [41] ZU G, KANAMORI K, SHIMIZU T, et al. Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators[J]. Chemistry of Materials, 2018, 30(8): 2759-2770.

    [42] [42] REZAEI S, ZOLALI A M, JALALI A, et al. Novel and simple design of nanostructured, super-insulative and flexible hybrid silica aerogel with a new macromolecular polyether-based precursor[J]. Journal of Colloid and Interface Science, 2020, 561: 890-901.

    [43] [43] SADEKAR A G, MAHADIK S S, BANG A N, et al. From ‘green’ aerogels to porous graphite by emulsion gelation of acrylonitrile[J]. Chemistry of Materials, 2012, 24(1): 26-47.

    [44] [44] LEE J K, GOULD G L, RHINE W. Polyurea based aerogel for a high performance thermal insulation material[J]. Journal of Sol-Gel Science and Technology, 2009, 49(2): 209-220.

    [45] [45] TAMAKI R, CHOI J, LAINE R M. A polyimide nanocomposite from octa (aminophenyl) silsesquioxane[J]. Chemistry of Materials, 2003, 15(3): 793-797.

    [46] [46] DUAN Y N, JANA S C, REINSEL A M, et al. Surface modification and reinforcement of silica aerogels using polyhedral oligomeric silsesquioxanes[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(43): 15362-15371.

    [47] [47] GUO H Q, MEADOR M A B, MCCORKLE L, et al. Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane[J]. ACS Applied Materials & Interfaces, 2011, 3(2): 546-552.

    [48] [48] BODAY D J, LOY D A, DEFRIEND K A, et al. Polymer-silica nanocomposite aerogels with enhanced mechanical properties using chemical vapor deposition (CVD) of cyanoacrylates[J]. MRS Proceedings, 2007, 1007: S09.

    [49] [49] BODAY D J, STOVER R J, MURIITHI B, et al. Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels[J]. ACS Applied Materials & Interfaces, 2009, 1(7): 1364-1369.

    [50] [50] BI H, CHEN I W, LIN T Q, et al. A new tubular graphene form of a tetrahedrally connected cellular structure[J]. Advanced Materials, 2015, 27(39): 5943-5949.

    [51] [51] OBREY K A D, WILSON K V, LOY D A. Enhancing mechanical properties of silica aerogels[J]. Journal of Non-Crystalline Solids, 2011, 357(19/20): 3435-3441.

    Tools

    Get Citation

    Copy Citation Text

    SUN Qiang, FENG Junzong, JIANG Yonggang, LI Liangjun, FENG Jian. Research Progress on Nanoscale Network Reinforcement Methods of Silica Aerogels[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3624

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 30, 2022

    Accepted: --

    Published Online: Nov. 10, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics