Optics and Precision Engineering, Volume. 26, Issue 11, 2814(2018)
Single image super-resolution reconstruction algorithm based on image self-similarity and multi-task Gaussian process regression
[1] [1] LI X, ORCHARD M T. New edge-directed interpolation [J]. 2001, 10(10): 1521-1527.
[3] [3] CHAN T, ESEDOGLU S, PARK F, et al.. Total Variation Image Restoration: Overview and Recent Developments [M]. Handbook of Mathematical Models in Computer Vision, 2006: 17-31.
[4] [4] SHAN Q, LI Z, JIA J, et al.. Fast image/video up-sampling [C]. ACM SIGGRAPH Asia, 2008: 153.
[5] [5] TAI Y W, LIU S, BROWN M S, et al.. Super resolution using edge prior and single image detail synthesis [C]. Computer Vision and Pattern Recognition, 2010: 2400-2407.
[6] [6] YANG J, WANG Z, LIN Z, et al.. Coupled dictionary training for image super-resolution [J]. IEEE Transactions on Image Processing, 2012, 21(8): 3467-3478.
[7] [7] YANG J, WRIGHT J, HUANG T S, et al.. Image super-resolution via sparse representation [J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
[9] [9] DONG W, ZHANG L, SHI G, et al.. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization [J]. IEEE Transactions on Image Processing, 2011, 20(7): 1838.
[10] [10] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1637-1645.
[11] [11] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1646-1654.
[12] [12] DONG C, CHEN C L, HE K, et al.. Learning a deep convolutional network for image super-resolution [C]. European Conference on Computer Vision, 2014: 184-199.
[13] [13] WANG Z, LIU D, YANG J, et al.. Deep networks for image super-resolution with sparse prior [C]. IEEE International Conference on Computer Vision, 2015: 370-378.
[14] [14] GU S, ZUO W, XIE Q, et al.. Convolutional sparse coding for image super-resolution [C]. IEEE International Conference on Computer Vision., 2015: 1823-1831.
[15] [15] GLASNER D, BAGON S, IRANI M. Super-resolution from a single image [C]. International Conference on Computer Vision, 2009: 349-356.
[16] [16] YANG J, LIN Z, COHEN S. Fast image super-resolution based on in-place example regression [C]. Computer Vision and Pattern Recognition, 2013: 1059-1066.
[17] [17] HE H, SIU W C. Single image super-resolution using Gaussian process regression [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2011: 449-456.
[18] [18] LI J, QU Y, LI C, et al.. Learning local Gaussian process regression for image super-resolution [J]. Neurocomputing, 2015, 154(C): 284-295.
[19] [19] WANG H, GAO X, ZHANG K, et al.. Image super-resolution using non-local Gaussian process regression[J]. Neurocomputing, 2016, 194: 95-106.
[20] [20] KWON Y, KIM K I, TOMPKIN J, et al.. Efficient learning of image super-resolution and compression artifact removal with semi-local Gaussian processes [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(9): 1.
[21] [21] YUAN Q P, LIN H J, CHEN ZH H, et al.. Single image super-resolution reconstruction using support vector regression [J]. Opt. Precision Eng., 2016, 24(9): 2302-2309. (in Chinese)
[22] [22] WANG S, ZHANG L, URTASUN R. Transductive Gaussian processes for image denoising [C]. IEEE International Conference on Computational Photography, 2014: 1-8.
[23] [23] CHENG K W, CHEN Y T, Fang W H. Video anomaly detection and localization using hierarchical feature representation and Gaussian process regression [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2015: 2909-2917.
[24] [24] LONG C, HUA G. Multi-class multi-annotator active learning with robust Gaussian process for visual recognition [C]. IEEE International Conference on Computer Vision, 2015: 2839-2847.
[25] [25] RASMUSSEN C E, Williams C K I. Gaussian processes for machine learning (adaptive computation and machine learning) [M]. The MIT Press, 2005.
[26] [26] ZHANG Y, YEUNG D Y. Multi-task warped Gaussian process for personalized age estimation [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2010: 2622-2629.
[27] [27] SNELSON E, RASMUSSEN C E, GHAHRAMANI Z. Warped Gaussian processes [C]. International Conference on Neural Information Processing Systems, 2004: 2003.
[28] [28] MAIRAL J, BACH F, PONCE J, et al.. Non-local sparse models for image restoration [C]. IEEE International Conference on Computer Vision, 2009: 2272-2279.
[29] [29] BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising [C]. Computer Vision and Pattern Recognition, 2005: 60-65.
[30] [30] LAWRENCE N, SEEGER M, HERBRICH R. Fast sparse Gaussian process methods: the informative vector machine [C]. International Conference on Neural Information Processing Systems, 2002: 625-632.
[31] [31] HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2015: 5197-5206.
[32] [32] TIMOFTE R, SMET V D, GOOL L V. A+: adjusted anchored neighborhood regression for fast super-resolution [C]. Asian Conference on Computer Vision, 2014: 111-126.
Get Citation
Copy Citation Text
LI Jian-hong, WU Ya-rong, L Ju-jian. Single image super-resolution reconstruction algorithm based on image self-similarity and multi-task Gaussian process regression[J]. Optics and Precision Engineering, 2018, 26(11): 2814
Category:
Received: May. 30, 2018
Accepted: --
Published Online: Jan. 10, 2019
The Author Email: Jian-hong LI (lijianhonghappy@163.com)