Acta Photonica Sinica, Volume. 52, Issue 11, 1113001(2023)

Research Progress in Optoelectronics Integration Technology Based on Piezoelectric Effect(Invited)

Jian SHEN... Chenglong FENG, Xun ZHANG, Lei ZHANG, Chang SHU, Yong ZHANG* and Yikai SU** |Show fewer author(s)
Author Affiliations
  • Department of Electronic Engineering,State Key Lab of Advanced Optical Communication Systems and Networks,Shanghai Jiao Tong University,Shanghai 200240,China
  • show less
    References(86)

    [1] R SOREF. Silicon photonics: a review of recent literature. Silicon, 2, 1-6(2010).

    [2] Yikai SU, Yu HE, Xuhan GUO et al. Scalability of large-scale photonic integrated circuits. ACS Photonics, 10, 2020-2030(2023).

    [3] Yong ZHANG, Yu HE, Qingming ZHU et al. Single-resonance silicon nanobeam filter with an ultra-high thermo-optic tuning efficiency over a wide continuous tuning range. Optics Letters, 43, 4518-4521(2018).

    [4] Luqi TU, Rongrong CAO, Xudong WANG et al. Ultrasensitive negative capacitance phototransistors. Nature Communications, 11, 101(2020).

    [5] S ABEL, T STOFERLE, C MARCHIORI et al. A hybrid barium titanate-silicon photonics platform for ultraefficient electro-optic tuning. Journal of Lightwave Technology, 34, 1688-1693(2016).

    [6] H JUNG, H X TANG. Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion. Nanophotonics, 5, 263-271(2016).

    [7] K ALEXANDER, J P GEORGE, J VERBIST et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nature Communications, 9, 3444(2018).

    [8] Jian SHEN, Yuyan FAN, Zihan XU et al. Ultralow-power piezo-optomechanically tuning on CMOS-compatible integrated silicon-hafnium-oxide platform. Laser & Photonics Reviews, 17, 202200248(2022).

    [9] D B SOHN, O E ÖRSEL, G BAHL. Electrically driven optical isolation through phonon-mediated photonic Autler-Townes splitting. Nature Photonics, 15, 822-827(2021).

    [10] M DONG, G CLARK, A J LEENHEER et al. High-speed programmable photonic circuits in a cryogenically compatible, visible-near-infrared 200 mm CMOS architecture. Nature Photonics, 16, 59-65(2021).

    [11] T ADAM, J KOLODZEY, C SWANN et al. The electrical properties of MIS capacitors with AlN gate dielectrics. The 10th International Conference on Solid Films and Surfaces, 175, 428-435(2001).

    [12] E MOKHOV, O AVDEEV, I BARASH et al. Sublimation growth of AlN bulk crystals in Ta crucibles. Journal of Crystal Growth, 281, 93-100(2005).

    [13] M MORITA, N UESUGI, S ISOGAI et al. Epitaxial growth of aluminum nitride on sapphire using metalorganic chemical vapor deposition. Japanese Journal of Applied Physics, 20, 17(1981).

    [14] Maoqi HE, Naiqun CHENG, Peizhen ZHOU et al. Preparation of nearly oxygen-free AlN thin films by pulsed laser deposition. Journal of Vacuum Science & Technology A, 16, 2372-2375(1998).

    [15] Chi XIONG, W H PERNICE, Xiankai SUN et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New Journal of Physics, 14, 095014(2012).

    [16] M STEGMAIER, J EBERT, J MECKBACH et al. Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths. Applied Physcis Letters, 104, 091108(2014).

    [17] J B SURYA, Xiang GUO, Changlin ZOU et al. Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings. Optica, 5, 103-108(2018).

    [18] G TERRASANTA, M MÜLLER, T SOMMER et al. Growth of aluminum nitride on a silicon nitride substrate for hybrid photonic circuits. Materials for Quantum Technology, 1, 021002(2021).

    [19] G IRIARTE, D REYES, D GONZÁLEZ et al. Influence of substrate crystallography on the room temperature synthesis of AlN thin films by reactive sputtering. Applied Surface Science, 257, 9306-9313(2011).

    [20] T J LU, M FANTO, H CHOI et al. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum. Optics Express, 26, 11147-11160(2018).

    [21] C D BRUZEWICZ, J CHIAVERINI, R MCCONNELL et al. Trapped-ion quantum computing: progress and challenges. Applied Physcis Reviews, 6, 021314(2019).

    [22] Yiren CHEN, Hang SONG, Dabing LI et al. Influence of the growth temperature of AlN nucleation layer on AlN template grown by high-temperature MOCVD. Materials Letters, 114, 26-28(2014).

    [23] Xianwen LIU, Changzheng SUN, Bing XIONG et al. Aluminum nitride-on-sapphire platform for integrated high-Q microresonators. Optics Express, 25, 587-594(2017).

    [24] Junhua YIN, Daihua CHEN, Hang YANG et al. Comparative spectroscopic studies of MOCVD grown AlN films on Al2O3 and 6H–SiC. Journal of Alloys and Compounds, 857, 157487(2021).

    [25] Chi XIONG, W H PERNICE, H X TANG. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Letters, 12, 3562-3568(2012).

    [26] H JUNG, H X TANG. Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion. Nanophotonics, 5, 263-271(2016).

    [27] T YOKOYAMA, Y IWAZAKI, Y ONDA et al. Highly piezoelectric co-doped AlN thin films for wideband FBAR applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62, 1007-1015(2015).

    [28] S BARTH, H BARTZSCH, D GLÖß et al. Magnetron sputtering of piezoelectric AlN and AlScN thin films and their use in energy harvesting applications. Microsystem Technologies, 22, 1613-1617(2016).

    [29] S T HAIDER, M A SHAH, D G LEE et al. A review of the recent applications of aluminum nitride-based piezoelectric devices. IEEE Access, 11, 58779-58795(2023).

    [30] M NOOR-A-ALAM, O Z OLSZEWSKI, M NOLAN. Ferroelectricity and large piezoelectric response of AlN/ScN superlattice. ACS Applied Materials & Interfaces, 11, 20482-20490(2019).

    [31] E THOMAS, R RANJITH. Effect of doping in aluminium nitride (AlN) nanomaterials: a review. ECS Transactions, 107, 15229(2022).

    [32] H H NGUYEN, L V MINH, H OGUCHI. Development of highly efficient micro energy harvesters with MgHf-codoped AlN piezoelectric films, 222-225(2018).

    [33] Longfei SONG, S GLINSEK, E DEFAY. Toward low-temperature processing of lead zirconate titanate thin films: Advances, strategies, and applications. Applied Physics Reviews, 8, 041315(2021).

    [34] P J WINZER. Making spatial multiplexing a reality. Nature Photonics, 8, 345-348(2014).

    [35] R FRUNZA, D RICINSCHI, F GHEORGHIU et al. Preparation and characterisation of PZT films by RF-magnetron sputtering. Journal of Alloys and Compounds, 509, 6242-6246(2011).

    [36] J N WINN, D RUSIN, C S KOCHANEK. The central image of a gravitationally lensed quasar. Nature, 427, 613-615(2004).

    [37] Xiaohong DU, Jiehui ZHENG, U BELEGUNDU et al. Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary. Applied Physics Letters, 72, 2421-2423(1998).

    [38] V KOVACOVA, N VAXELAIRE, G LE RHUN et al. Correlation between electric-field-induced phase transition and piezoelectricity in lead zirconate titanate films. Physical Review B, 90, 140101(2014).

    [39] G TAN, K MARUYAMA, Y KANAMITSU et al. Crystallographic contributions to piezoelectric properties in PZT thin films. Scientific Reports, 9, 7309(2019).

    [40] Yifan QI, Yang LI. Integrated lithium niobate photonics. Nanophotonics, 9, 1287-1320(2020).

    [41] Sen YANG, Huixin BAO, Chao ZHOU et al. Large magnetostriction from morphotropic phase boundary in ferromagnets. Physical Review Letters, 104, 197201(2010).

    [42] T S BÖSCKE, J MÜLLER, D BRÄUHAUS et al. Ferroelectricity in hafnium oxide thin films. Applied Physics Letters, 99, 102903(2011).

    [43] J MüLLER, TS BÖSCKE, U SCHRODER et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Letters, 12, 4318-4323(2012).

    [44] S MÜLLER, J MÜLLER, A SINGH et al. Incipient ferroelectricity in Al-doped HfO2 thin films. Advanced Functional Materials, 22, 2412-2417(2012).

    [45] Yu ZHANG, Jun XU, Dayu ZHOU et al. Effects of Hf buffer layer at the Y-doped HfO2/Si interface on ferroelectric characteristics of Y-doped HfO2 films formed by reactive sputtering. Ceramics International, 44, 12841-12846(2018).

    [46] T C U TROMM, J ZHANG, J SCHIBERT et al. Ferroelectricity in Lu doped HfO2 layers. Applied Physics Letters, 111, 142904(2017).

    [47] T KIM, J W LIM, S J YUN et al. Multi-level long-term memory resembling human memory based on photosensitive field-effect transistors with stable interfacial deep traps. Advanced Electronic Materials, 6, 1901044(2020).

    [48] T MITTMANN, M MATERANO, P D LOMENZO et al. Origin of ferroelectric phase in undoped HfO2 films deposited by sputtering. Advanced Materials Interfaces, 6, 1900042(2019).

    [49] S S CHEEMA, D KWON, N SHANKER et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature, 580, 478-482(2020).

    [50] Yingfen WEI, P NUKALA, M SALVERDA et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nature Materials, 17, 1095-1100(2018).

    [51] M D GLINCHUK, A N MOROZOVSKA, A LUKOWIAK et al. Possible electrochemical origin of ferroelectricity in HfO2 thin films. Journal of Alloys and Compounds, 830, 153628(2020).

    [52] Y SAKASHITA, H SEGAWA. Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition. Journal of Applied Physics, 77, 5995-5999(1995).

    [53] Mingxiao LI, Jingwei LING, Yang HE et al. Lithium niobate photonic-crystal electro-optic modulator. Nature Communications, 11, 4123(2020).

    [54] Y NAKATA, S GUNJI, T OKADA et al. Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties. Applied Physics A, 79, 1279-1282(2004).

    [55] J G YOON, K KIM. Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process. Applied Physics Letters, 68, 2523-2525(1996).

    [56] Xingrui HUANG, Yang LIU, Huan GUAN et al. High-efficiency, slow-light modulator on hybrid thin-film lithium niobate platform. IEEE Photonics Technology Letters, 33, 1093-1096(2021).

    [57] Di ZHU, Linbo SHAO, Mengjie YU et al. Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics, 13, 242-352(2021).

    [58] V EDON, D RÈMIENS, S SAADA. Structural, electrical and piezoelectric properties of LiNbO3 thin films for surface acoustic wave resonators applications. Applied Surface Science, 256, 1455-1460(2009).

    [59] Feifei CHEN, Lingfeng KONG, Wei SONG et al. The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications. Journal of Materiomics, 5, 73-80(2019).

    [60] R N ZHUKOV, K S KUSHNEREV, D A KISELEV et al. Enhancement of piezoelectric properties of lithium niobate thin films by different annealing parameters. Modern Electronic Materials, 6, 47-52(2020).

    [61] T S YOO, S A LEE, C ROH et al. Ferroelectric polarization rotation in order-disorder-type LiNbO3 thin films. ACS Applied Materials & Interfaces, 10, 41471-41478(2018).

    [62] Y SEBBAG, I GOYKHMAN, B DESIATOV et al. Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film. Applied Physics Letters, 100, 141107(2012).

    [63] W JIN, R G POLCAWICHOL, P A MORTON et al. Phase tuning by length contraction. Optics Express, 26, 3174-3187(2018).

    [64] Jiawei WANG, Kaikai LIU, M W HARRINGTON et al. Silicon nitride stress-optic microresonator modulator for optical control applications. Optics Express, 30, 31816-31827(2022).

    [65] P R STANFIELD, A J LEENHEER, C P MICHAEL et al. CMOS-compatible, piezo-optomechanically tunable photonics for visible wavelengths and cryogenic temperatures. Optics Express, 27, 28588-28605(2019).

    [66] Hao TIAN, Junqiu LIU, Bin DONG et al. Hybrid integrated photonics using bulk acoustic resonators. Nature Communications, 11, 3073(2020).

    [67] EVERHARDTA , TLA TRAN, C MITSOLIDOU et al. Ultra-low power stress-based phase actuation in TriPleX photonic circuits. Integrated Optics: Devices, Materials, and Technologies XXVI, 12004, 15-21(2022).

    [68] Junqiu LIU, Hao TIAN, E LUCAS et al. Monolithic piezoelectric control of soliton microcombs. Nature, 583, 385-390(2020).

    [69] P JEAN, A GERVAIS, S LAROCHELLE et al. Slow light in subwavelength grating waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-8(2019).

    [70] M DONG, D HEIM, A WITTE et al. Piezo-optomechanical cantilever modulators for VLSI visible photonics. APL Photonics, 7, 051304(2022).

    [71] S A TADESSE, Mo LI. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nature Communications, 5, 5402(2014).

    [72] Huan LI, S A TADESSE, Qiyu LIU et al. Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz. Optica, 2, 826-831(2015).

    [73] D B SOHN, G BAHL. Direction reconfigurable nonreciprocal acousto-optic modulator on chip. APL Photonics, 4, 126103(2019).

    [74] Chukun HUANG, Haotian SHI, Linfeng YU et al. Acousto-optic modulation in silicon waveguides based on piezoelectric aluminum scandium nitride film. Advanced Optical Materials, 10, 2102334(2022).

    [75] Lutong CAI, A MAHMOUD, M KHAN et al. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Research, 7, 1003-1013(2019).

    [76] Linbo SHAO, Mengjie YU, S MAITY et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 6, 1498-1505(2019).

    [77] A E HASSANIEN, S LINK, Yansong YANG et al. Efficient and wideband acousto-optic modulation on thin-film lithium niobate for microwave-to-photonic conversion. Photonics Research, 9, 1182-1190(2021).

    [78] C J SARABALIS, T P MCKENNA, R N PATEL et al. Acousto-optic modulation in lithium niobate on sapphire. APL Photonics, 5, 086104(2020).

    [79] M S I KHAN, A MAHMOUD, Lutong CAI et al. Extraction of elastooptic coefficient of thin-film arsenic trisulfide using a Mach-Zehnder acoustooptic modulator on lithium niobate. Journal of Lightwave Technology, 38, 2053-2059(2020).

    [80] Zejie YU, Xiankai SUN. Acousto-optic modulation of photonic bound state in the continuum. Light: Science & Applications, 9, 1(2020).

    [81] Lei WAN, Zhiqiang YANG, Wenfeng ZHOU et al. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light: Science & Applications, 11, 145(2022).

    [82] Zhiqiang YANG, Meixun WEN, Lei WAN et al. Efficient acousto-optic modulation using a microring resonator on a thin-film lithium niobate-chalcogenide hybrid platform. Optics Letters, 47, 3808-3811(2022).

    [83] Hao TIAN, Junqiu LIU, A SIDDHARTH et al. Magnetic-free silicon nitride integrated optical isolator. Nature Photonics, 15, 828-836(2021).

    [84] D B SOHN, S KIM, G BAHL. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nature Photonics, 12, 91-97(2018).

    [85] E A KITTLAUS, W M JONES, P T RAKICH et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nature Photonics, 15, 43-52(2021).

    [86] Han ZHAN, Bingzhao LI, Huan LI et al. Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics. Nature Communications, 13, 5426(2022).

    Tools

    Get Citation

    Copy Citation Text

    Jian SHEN, Chenglong FENG, Xun ZHANG, Lei ZHANG, Chang SHU, Yong ZHANG, Yikai SU. Research Progress in Optoelectronics Integration Technology Based on Piezoelectric Effect(Invited)[J]. Acta Photonica Sinica, 2023, 52(11): 1113001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: Oct. 1, 2023

    Accepted: Nov. 6, 2023

    Published Online: Dec. 22, 2023

    The Author Email: ZHANG Yong (yongzhang@sjtu.edu.cn), SU Yikai (yikaisu@sjtu.edu.cn)

    DOI:10.3788/gzxb20235211.1113001

    Topics