Laser & Optoelectronics Progress, Volume. 60, Issue 19, 1900004(2023)

Research Progress and Application of Random Metal Grid Transparent Conductive Films

Dunwei Liao, Yuejun Zheng*, Qiang Chen, and Yunqi Fu**
Author Affiliations
  • College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, Hunan , China
  • show less
    References(86)

    [1] Kim H, Horwitz J S, Kushto G P et al. Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes[J]. Applied Physics Letters, 78, 1050-1052(2001).

    [2] Zhao W Y, Zhang M Y, Bi R et al. Infrared Hf-doped ZnO transparent conductive film[J]. Acta Optica Sinica, 41, 2031002(2021).

    [3] Wang Y F, Zhang X D, Huang Q et al. Experimental and theoretical investigation of transparent and conductive B doped ZnO film[J]. Acta Physica Sinica, 62, 247802(2013).

    [4] Vinodh M S, Mohan S, Subaskar P et al. Indium tin oxide coatings on flexible and rigid substrates for application in smart windows[J]. Proceedings of SPIE, 5062, 780-787(2003).

    [5] Wu Y L, Cheng H F, Yu G et al. Relationship between optical/electrical properties and thethickness of the ITO films[J]. Journal of Materials Science and Engineering, 30, 14-16(2012).

    [6] Hansen R C, Pawlewicz W T. Effective conductivity and microwave reflectivity of thin metallic films[J]. IEEE Transactions on Microwave Theory and Techniques, 30, 2064-2066(1982).

    [7] Zhao Y L, Li K X, Li X F et al. Transparent shielding film based on the metallic photonic crystal[J]. Acta Optica Sinica, 35, 0831001(2015).

    [8] Maniyara R A, Mkhitaryan V K, Chen T L et al. An antireflection transparent conductor with ultralow optical loss (<2%) and electrical resistance (<6 Ω sq-1)[J]. Nature Communications, 7, 13771(2016).

    [9] Hu Y Z. Graphene growth at the interface of sapphire substrate and nickel layer[J]. Laser & Optoelectronics Progress, 58, 2316006(2021).

    [10] Ma L M, Lu Z G, Tan J B et al. Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene[J]. ACS Applied Materials & Interfaces, 9, 34221-34229(2017).

    [11] He D P, Li B W. Recent progress on graphene-based materials for electromagnetic interference shielding applications[J]. Journal of Materials Engineering, 48, 14-23(2020).

    [12] Al-Saleh M H, Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites[J]. Carbon, 47, 1738-1746(2009).

    [13] Falco A, Cinà L, Scarpa G et al. Fully-sprayed and flexible organic photodiodes with transparent carbon nanotube electrodes[J]. ACS Applied Materials & Interfaces, 6, 10593-10601(2014).

    [14] Yan H, Okuzaki H. Poly(3, 4-ethylenedioxythiophen)/poly(4-styrenesul-fonate): thin films and microfibers[J]. Macromolecular Symposia, 296, 286-293(2010).

    [15] Hosseini E, Arjmand M, Sundararaj U et al. Filler-free conducting polymers as a new class of transparent electromagnetic interference shields[J]. ACS Applied Materials & Interfaces, 12, 28596-28606(2020).

    [16] Sun X, Huang Y, Wang L et al. Study on the flexible transparent conductive film based on silver nanowire[J]. Development and Application of Materials, 28, 95-102(2013).

    [17] Ye S R, Rathmell A R, Chen Z F et al. Metal nanowire networks: the next generation of transparent conductors[J]. Advanced Materials, 26, 6670-6687(2014).

    [18] Cheong W S, Kim Y H, Lee J M et al. High-performance transparent electrodes for automobile windshield heaters prepared by combining metal grids and oxide/metal/oxide transparent electrodes[J]. Advanced Materials Technologies, 4, 1800550(2019).

    [19] Abbasi S A, Chai Z M, Busnaina A. Scalable printing of high-resolution flexible transparent grid electrodes using directed assembly of silver nanoparticles[J]. Advanced Materials Interfaces, 6, 1900898(2019).

    [20] Chen J P, Huang W B, Jiang Z Y et al. Flexible and transparent planar supercapacitor based on embedded metallic mesh current collector[J]. Journal of Physics D: Applied Physics, 53, 165501(2020).

    [21] Wang W Q, Bai B F, Zhou Q et al. Petal-shaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction[J]. Optical Materials Express, 8, 3485-3493(2018).

    [22] Zhong H, Han Y, Lin J et al. Pattern randomization: an efficient way to design high-performance metallic meshes with uniform stray light for EMI shielding[J]. Optics Express, 28, 7008-7017(2020).

    [23] Ghosh D S, Chen T L, Pruneri V. High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid[J]. Applied Physics Letters, 96, 041109(2010).

    [24] Tan J B, Lu Z G. Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light[J]. Optics Express, 15, 790-796(2007).

    [25] Lu Z G, Tan J B, Qi J et al. Modeling Fraunhofer diffractive characteristics for modulation transfer function analysis of tilted ring metallic mesh[J]. Optics Communications, 284, 3855-3861(2011).

    [26] Sam F L M, Razali M A, Jayawardena K D G I et al. Silver grid transparent conducting electrodes for organic light emitting diodes[J]. Organic Electronics, 15, 3492-3500(2014).

    [27] Kim W K, Lee S, Lee D H et al. Cu mesh for flexible transparent conductive electrodes[J]. Scientific Reports, 5, 10715(2015).

    [28] Halman J I, Ramsey K A, Thomas M et al. Predicted and measured transmission and diffraction by a metallic mesh coating[J]. Proceedings of SPIE, 7302, 73020Y(2009).

    [29] Lu Z G, Wang H Y, Tan J B et al. Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays[J]. Optics Letters, 41, 1941-1944(2016).

    [30] Wang H Y, Lu Z G, Tan J B. Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays[J]. Optics Express, 24, 22989-23000(2016).

    [31] Lu Z, Liu Y, Wang H et al. Optically transparent frequency selective surface based on nested ring metallic mesh[J]. Optics Express, 24, 26109(2016).

    [32] Wang H Y. Transparent electromagnetic shielding method based on ultrathin doped silver film[D], 91-109(2019).

    [33] Lu X. Research on high-transmittance electromagnetic shielding method based on randomly distributed mirco-ring[D], 22-37(2019).

    [34] Zuo C L. Research on electromagnetic shielding method of frequency selective surface based on random overlapping ring metallic meshes[D], 58-78(2019).

    [35] Wang H Y, Lu Z G, Liu Y S et al. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding[J]. Optics Letters, 42, 1620-1623(2017).

    [36] Wang H Y, Lu Z G, Tan J B et al. Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding[J]. Thin Solid Films, 662, 76-82(2018).

    [37] Lu X, Liu Y S, Lu Z G et al. High-transmittance double-layer frequency-selective surface based on interlaced multiring metallic mesh[J]. Optics Letters, 44, 1253-1256(2019).

    [38] Xu X M, Lin Z X, Wang S H et al. Effect of the rotation angle in multi-ring metallic meshes on shielding effectiveness[J]. IEEE Microwave and Wireless Components Letters, 30, 629-632(2020).

    [39] Murray I B, Densmore V, Bora V et al. Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software[J]. Proceedings of SPIE, 8016, 80160U(2011).

    [40] Jiang Z Y, Huang W B, Chen L S et al. Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding[J]. Optics Express, 27, 24194-24206(2019).

    [41] Shin D K, Park J. Design of Moiré-free metal meshes using ray tracing for touch screen panels[J]. Displays, 38, 9-19(2015).

    [42] Gao Y L, Cui Z, Zhou F. Conductive transparent conductive film with anisotropy[P].

    [43] Li Y P. A method for generating random mesh pattern without angle transparent shielding[P].

    [44] Liu L Y, Zhou X H, Ji L L. Generation method and application of random grid pattern of conductive film[P].

    [45] Han B, Huang Y, Li R et al. Bio-inspired networks for optoelectronic applications[J]. Nature Communications, 5, 5674(2014).

    [46] Gao J, Xian Z, Zhou G et al. Nature‐inspired metallic networks for transparent electrodes[J]. Advanced Functional Materials, 28, 1705023(2017).

    [47] Yu Y, Zhang Y K, Li K et al. Bio-inspired chemical fabrication of stretchable transparent electrodes[J]. Small, 11, 3444-3449(2015).

    [48] Dong G P, Liu S, Pan M Q et al. Bioinspired high-adhesion metallic networks as flexible transparent conductors[J]. Advanced Materials Technologies, 4, 1900056(2019).

    [49] Gao J W, Kempa K, Giersig M et al. Physics of transparent conductors[J]. Advances in Physics, 65, 553-617(2016).

    [50] Gao J W, Han B. Experimental teaching research on the fabrication of bionic leaf vein-like flexible transparent conductive electrodes[J]. Journal of South China Normal University (Natural Science Edition), 47, 121-123(2015).

    [51] Han B, Peng Q, Li R P et al. Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics[J]. Nature Communications, 7, 12825(2016).

    [52] Dong G P. Preparation of bio-inspired Ag network structure flexible transparent conductive electrode and its property research[D], 106-124(2020).

    [53] Qiang Y X, Zhu C H, Wu Y P et al. Bio-inspired semi-transparent silver nanowire conductor based on a vein network with excellent electromechanical and photothermal properties[J]. RSC Advances, 8, 23066-23076(2018).

    [54] Li T. Preparation and properties of a leaf vein-like hierarchical silver grids transparent electrode with the application in flexible electrochromics mart windows[D], 53-68(2019).

    [55] Sepat N, Sharma V, Singh S et al. Bioinspired metal mesh structure with significant electrical and optical properties[J]. Advanced Electronic Materials, 5, 1800318(2019).

    [56] Han B, Pei K, Huang Y L et al. Uniform self-forming metallic network as a high-performance transparent conductive electrode[J]. Advanced Materials, 26, 873-877(2014).

    [57] Peng Q, Li S R, Han B et al. Colossal figure of merit in transparent-conducting metallic ribbon networks[J]. Advanced Materials Technologies, 1, 1600095(2016).

    [58] Xian Z K, Han B, Li S R et al. A practical ITO replacement strategy: sputtering-free processing of a metallic nanonetwork[J]. Advanced Materials Technologies, 2, 1700061(2017).

    [59] Han Y, Li P, Zhao L Y et al. Facile hydrophobicity/hydrophilicity modification of SMP surface based on metal constrained cracking[J]. Proceedings of SPIE, 9430, 94302Q(2015).

    [60] Han Y. Research on metallic mesh transparent conductive film prepared by random crackle-template[D], 35-63(2015).

    [61] Han Y, Lin J, Liu Y X et al. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding[J]. Scientific Reports, 6, 25601(2016).

    [62] Han Y, Liu Y X, Han L et al. High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding[J]. Carbon, 115, 34-42(2017).

    [63] Xiao Z H, Wang X L, Han C et al. Photoelectric properties of transparent conductive metalmesh prepared by crack template[J]. Journal of Xinyu University, 23, 1-5(2018).

    [64] Shen S, Chen S Y, Zhang D Y et al. High-performance composite Ag-Ni mesh based flexible transparent conductive film as multifunctional devices[J]. Optics Express, 26, 27545-27554(2018).

    [65] Lee D E, Go S, Hwang G et al. Two-dimensional micropatterns via crystal growth of Na2CO3 for fabrication of transparent electrodes[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 29, 12259-12265(2013).

    [66] Kiruthika S, Rao K D M, Kumar A et al. Metal wire network based transparent conducting electrodes fabricated using interconnected crackled layer as template[J]. Materials Research Express, 1, 026301(2014).

    [67] Kiruthika S, Gupta R, Rao K D M et al. Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network[J]. Journal of Materials Chemistry C, 2, 2089-2094(2014).

    [68] Gupta R, Rao K D M, Srivastava K et al. Spray coating of crack templates for the fabrication of transparent conductors and heaters on flat and curved surfaces[J]. ACS Applied Materials & Interfaces, 6, 13688-13696(2014).

    [69] Guo C F, Sun T Y, Liu Q H et al. Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography[J]. Nature Communications, 5, 3121(2014).

    [70] Rao K D M, Gupta R, Kulkarni G U. Fabrication of large area, high-performance, transparent conducting electrodes using a spontaneously formed crackle network as template[J]. Advanced Materials Interfaces, 1, 1400090(2014).

    [71] Rao K D M, Hunger C, Gupta R et al. A cracked polymer templated metal network as a transparent conducting electrode for ITO-free organic solar cells[J]. Physical Chemistry Chemical Physics, 16, 15107-15110(2014).

    [72] Kiruthika S, Gupta R, Kulkarni G U. Large area defrosting windows based on electrothermal heating of highly conducting and transmitting Ag wire mesh[J]. RSC Advances, 4, 49745-49751(2014).

    [73] Kiruthika S, Gupta R, Anand A et al. Fabrication of oxidation-resistant metal wire network-based transparent electrodes by a spray-roll coating process[J]. ACS Applied Materials & Interfaces, 7, 27215-27222(2015).

    [74] Suh Y D, Kwon J, Lee J et al. Maskless fabrication of highly robust, flexible transparent Cu conductor by random crack network assisted Cu nanoparticle patterning and laser sintering[J]. Advanced Electronic Materials, 2, 1600277(2016).

    [75] Seo K W, Noh Y J, Na S I et al. Random mesh-like Ag networks prepared via self-assembled Ag nanoparticles for ITO-free flexible organic solar cells[J]. Solar Energy Materials and Solar Cells, 155, 51-59(2016).

    [76] Gupta N, Rao K D M, Gupta R et al. Highly conformal Ni micromesh as a current collecting front electrode for reduced cost Si solar cell[J]. ACS Applied Materials & Interfaces, 9, 8634-8640(2017).

    [77] Kim Y G, Tak Y J, Park S P et al. Structural engineering of metal-mesh structure applicable for transparent electrodes fabricated by self-formable cracked template[J]. Nanomaterials, 7, 214(2017).

    [78] Yang C B, Merlo J M, Kong J T et al. All-solution-processed, scalable, self-cracking Ag network transparent conductor[J]. Physica Status Solidi (a), 215, 1700504(2017).

    [79] Muzzillo C P, Reese M O, Mansfield L M. Macroscopic nonuniformities in metal grids formed by cracked film lithography result in 19.3% efficient solar cells[J]. ACS Applied Materials & Interfaces, 12, 25895-25902(2020).

    [80] Voronin A S, Voronin A S, Fadeev Y V et al. Random Ag mesh transparent heater obtained with a cracked template technique[J]. Journal of Physics: Conference Series, 1679, 042087(2020).

    [81] Muzzillo C P, Wong E, Mansfield L M et al. Patterning metal grids for GaAs solar cells with cracked film lithography: quantifying the cost/performance tradeoff[J]. ACS Applied Materials & Interfaces, 12, 41471-41476(2020).

    [82] Muzzillo C P, Reese M O, Mansfield L M. Fundamentals of using cracked film lithography to pattern transparent conductive metal grids for photovoltaics[J]. Langmuir, 36, 4630-4636(2020).

    [83] Tran V V, Nguyen D D, Nguyen A T et al. Electromagnetic interference shielding by transparent graphene/nickel mesh films[J]. ACS Applied Nano Materials, 3, 7474-7481(2020).

    [84] Chen L S, Qiao W, Ye Y et al. Critical technologies of micro-nano-manufacturing and its applications for flexible optoelectronic devices[J]. Acta Optica Sinica, 41, 0823018(2021).

    [85] Zhou X W, Liao J N, Yao Y et al. Direct laser writing of micro/nanocopper structures and their applications[J]. Chinese Journal of Lasers, 48, 0802012(2021).

    [86] Murali G, Dipjoyti D, Krishnan I P et al. Work function tunable metal-mesh based transparent electrodes for fabricating indium-free organic light-emitting diodes[J]. Materials Research Express, 7, 054005(2020).

    Tools

    Get Citation

    Copy Citation Text

    Dunwei Liao, Yuejun Zheng, Qiang Chen, Yunqi Fu. Research Progress and Application of Random Metal Grid Transparent Conductive Films[J]. Laser & Optoelectronics Progress, 2023, 60(19): 1900004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Apr. 28, 2022

    Accepted: Jun. 13, 2022

    Published Online: Sep. 20, 2023

    The Author Email: Zheng Yuejun (zhengyuejun18@nudt.edu.cn), Fu Yunqi (yunqifu@nudt.edu.cn)

    DOI:10.3788/LOP221450

    Topics