Laser & Optoelectronics Progress, Volume. 60, Issue 15, 1500001(2023)

Research Progress of High-Power Narrow-Linewidth Lasers Based on Spectral Broadening

Mengyue Shi1, Yong Wu1, Jie Li1, Zhiwei Fang1, Jiajin Wang1, Huan Mu2, and Lilin Yi1、*
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2AIOPTICS Technology Co., Ltd., Shanghai 200240, China
  • show less
    References(50)

    [1] Ye Y T, Xiao J, Rao J Z[M]. Optics course(2011).

    [2] Jeong Y, Nilsson J, Sahu J K et al. Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 546-551(2007).

    [3] Yu C X, Augst S J, Redmond S M et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 36, 2686-2688(2011).

    [4] Kontur F J, Dajani I, Lu Y L et al. Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT, and PPMgLN[J]. Optics Express, 15, 12882-12889(2007).

    [5] Cheng Z W, Qi B X, Zhang T et al. Research on fiber laser butt welding process of 3D-GH3536/R-GH3128 dissimilar superalloy[J]. Chinese Journal of Lasers, 49s, 2202013(2022).

    [6] Wang C Y, Lin Q, Lü C et al. Blue laser-assisted infrared MOPA fiber laser spot welding of pure copper sheets[J]. Chinese Journal of Lasers, 49, 1602008(2022).

    [7] Yan J X[M]. Laser weapons(2016).

    [8] Xi X M, Wang M, Tian X et al. Record high-power narrow-linewidth fiber laser based on one-stage master oscillator power amplification configuration[J]. Chinese Journal of Lasers, 49, 1115001(2022).

    [9] Kim J, Yarrow M, Clarkson W. High power single-frequency continuous-wave Nd:YVO4 master-oscillator power amplifier[J]. Applied Physics B, 85, 539-543(2006).

    [10] Liem A, Limpert J, Zellmer H et al. 100-W single-frequency master-oscillator fiber power amplifier[J]. Optics Letters, 28, 1537-1539(2003).

    [11] Zhang D G, Luo W S, Dong J et al. Process optimization for MOPA fiber laser engraving of carbon steel[J]. Acta Optica Sinica, 42, 2014001(2022).

    [12] Liu W, Ma P F, Lai W C et al. Evolution of relative intensity noise in high-power narrow-linewidth fiber laser systems[J]. Journal of Lightwave Technology, 39, 6413-6419(2021).

    [13] Li Z B, Huang Z H, Xiang X Y et al. Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser[J]. Photonics Research, 5, 77-81(2017).

    [14] Xu Y, Sheng Q, Wang P et al. 2.4 kW 1045 nm narrow-spectral-width monolithic single-mode CW fiber laser by using an FBG-based MOPA configuration[J]. Applied Optics, 60, 3740-3746(2021).

    [15] Harish A V, Nilsson J. Optimization of phase modulation formats for suppression of stimulated Brillouin scattering in optical fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 5100110(2018).

    [16] Zha C W, Peng W J, Wang X J et al. Self-pulsing in kilowatt level narrow-linewidth fiber amplifier with WNS phase-modulation[J]. Optics Express, 25, 19740-19751(2017).

    [17] Hu S L, Zhang C X, Wang S C et al. Self-pulsing behaviors of Yb-doped fiber lasers[J]. Chinese Journal of Lasers, 35, 45-48(2008).

    [18] Platonov N, Yagodkin R, De La Cruz J et al. Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format[J]. Proceedings of SPIE, 10512, 105120E(2018).

    [19] Wang Y S, Feng Y J, Ma Y et al. 2.5 kW narrow linewidth linearly polarized all-fiber MOPA with cascaded phase-modulation to suppress SBS induced self-pulsing[J]. IEEE Photonics Journal, 12, 1502815(2020).

    [20] Kobyakov A, Sauer M, Chowdhury D. Stimulated Brillouin scattering in optical fibers[J]. Advances in Optics and Photonics, 2, 1-59(2010).

    [21] Alegria C, Jeong Y, Codemard C et al. 83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber[J]. IEEE Photonics Technology Letters, 16, 1825-1827(2004).

    [22] Gray S, Liu A P, Walton D T et al. 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier[J]. Optics Express, 15, 17044-17050(2007).

    [23] Valero N, Feral C, Lhermite J et al. 39 W narrow spectral linewidth monolithic ytterbium-doped fiber MOPA system operating at 976 nm[J]. Optics Letters, 45, 1495-1498(2020).

    [24] Liu A P. Stimulated Brillouin scattering in single-frequency fiber amplifiers with delivery fibers[J]. Optics Express, 17, 15201-15209(2009).

    [25] Zhang L, Cui S Z, Liu C et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier[J]. Optics Express, 21, 5456-5462(2013).

    [26] Shi W, Petersen E B, Yao Z D et al. Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm[J]. Optics Letters, 35, 2418-2420(2010).

    [27] Wang X L, Zhou P J, Xiao H D et al. 310 W single-frequency all-fiber laser in master oscillator power amplification configuration[J]. Laser Physics Letters, 9, 591-595(2012).

    [28] Liu Y F, Lv Z W, Dong Y K et al. Research on stimulated Brillouin scattering suppression based on multi-frequency phase modulation[J]. Chinese Optics Letters, 7, 29-31(2009).

    [29] Ma P, Tao R, Su R et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 24, 4187-4195(2016).

    [30] Engin D, Lu W, Akbulut M et al. 1 kW CW Yb-fiber-amplifier with <0.5 GHz linewidth and near-diffraction limited beam-quality for coherent combining application[J]. Proceedings SPIE, 7914, 791407(2011).

    [31] Liu Y K, Su R T, Ma P F et al. >1 kW all-fiberized narrow-linewidth polarization-maintained fiber amplifiers with wavelength spanning from 1065 to 1090 nm[J]. Applied Optics, 56, 4213-4218(2017).

    [32] Williamson R S III. Laser coherence control using homogeneous linewidth broadening[P].

    [33] Su R T, Yakun L, Yang B L et al. Active polarization control of a 1.43 kW narrow linewidth fiber amplifier based on SPGD algorithm[J]. Journal of Optics, 19, 045802(2017).

    [34] Su R T, Tao R M, Wang X L et al. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression[J]. Laser Physics Letters, 14, 085102(2017).

    [35] Mussot A, Le Parquier M, Szriftgiser P. Thermal noise for SBS suppression in fiber optical parametric amplifiers[J]. Optics Communications, 283, 2607-2610(2010).

    [36] Coles J B, Kuo B P P, Alic N et al. Bandwidth-efficient phase modulation techniques for stimulated Brillouin scattering suppression in fiber optic parametric amplifiers[J]. Optics Express, 18, 18138-18150(2010).

    [37] Zeringue C, Dajani I, Naderi S et al. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light[J]. Optics Express, 20, 21196-21213(2012).

    [38] Robin C, Dajani I, Zernigue C et al. Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers[J]. Proceedings SPIE, 8601, 86010Z(2013).

    [39] Anderson B M, Flores A, Dajani I. Filtered pseudo random modulated fiber amplifier with enhanced coherence and nonlinear suppression[J]. Optics Express, 25, 17671-17682(2017).

    [40] Anderson B, Flores A, Holten R et al. Comparison of phase modulation schemes for coherently combined fiber amplifiers[J]. Optics Express, 23, 27046-27060(2015).

    [41] Liu M Z, Yang Y F, Shen H et al. 1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap[J]. Scientific Reports, 10, 629(2020).

    [42] Yang Y F, Li B L, Liu M Z et al. Optimization and visualization of phase modulation with filtered and amplified maximal-length sequence for SBS suppression in a short fiber system: a theoretical treatment[J]. Optics Express, 29, 16781-16803(2021).

    [43] White J O, Young J T, Wei C L et al. Seeding fiber amplifiers with piecewise parabolic phase modulation for high SBS thresholds and compact spectra[J]. Optics Express, 27, 2962-2974(2019).

    [44] Shi M Y, Wu Z L, Li J et al. High-power narrow-linewidth fiber lasers using optical spectrum broadening based on high-order phase modulation of inversion probability-tuning sequence[J]. Optics Express, 30, 8448-8460(2022).

    [45] Tanemura T, Takushima Y, Kikuchi K. Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber[J]. Optics Letters, 27, 1552-1554(2002).

    [46] Shi M Y, Yu M H, Fang Z W et al. Real-time definite sequence modulation based spectral broadening scheme for high-power narrow-linewidth fiber laser[J]. Journal of Lightwave Technology, 40, 6222-6229(2022).

    [47] White J O, Harfouche M, Edgecumbe J et al. 1.6 kW Yb fiber amplifier using chirped seed amplification for stimulated Brillouin scattering suppression[J]. Applied Optics, 56, B116-B122(2017).

    [48] Satyan N, Vasilyev A, Rakuljic G et al. Precise control of broadband frequency chirps using optoelectronic feedback[J]. Optics Express, 17, 15991-15999(2009).

    [49] Jayaraman V, Cole G D, Robertson M et al. Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs[J]. Electronics Letters, 48, 1331-1333(2012).

    [50] Li J, Shi M Y, Wu Y et al. A flat-top seed source using binarized multi-frequency signals modulation for high-power fiber lasers[C](2022).

    Tools

    Get Citation

    Copy Citation Text

    Mengyue Shi, Yong Wu, Jie Li, Zhiwei Fang, Jiajin Wang, Huan Mu, Lilin Yi. Research Progress of High-Power Narrow-Linewidth Lasers Based on Spectral Broadening[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1500001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Aug. 29, 2022

    Accepted: Nov. 15, 2022

    Published Online: Aug. 11, 2023

    The Author Email: Yi Lilin (lilinyi@sjtu.edu.cn)

    DOI:10.3788/LOP222419

    Topics