Journal of the Chinese Ceramic Society, Volume. 50, Issue 7, 1890(2022)
Pyrolyzed Hydrogenated Anthracite as Anode Materials for Sodium-ion Batteries
[1] [1] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1): 19-29.
[2] [2] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[3] [3] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
[4] [4] PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energ Environ Sci, 2012, 5(3): 5884-5901.
[5] [5] PAN H L, HU Y S, CHEN L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energ Environ Sci, 2013, 6(8): 2338-2360.
[6] [6] YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chem Rev, 2011, 111(5): 3577-3613.
[7] [7] SAUREL D, ORAYECH B, XIAO B W, et al. From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Adv Energy Mater, 2018, 8: 1703268.
[8] [8] DOEFF M M, MA Y P, VISCO S J, et al. Electrochemical insertion of sodium into carbon[J]. J Electrochem Soc, 1993, 140(12): L169-L170.
[9] [9] STEVENS D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. J Electrochem Soc, 2000, 147(4): 1271-1273.
[10] [10] THOMAS P, BILLAUD D. Electrochemical insertion of sodium into hard carbons[J]. Electrochim Acta, 2002, 47(2): 3303-3307.
[11] [11] ALVIN S, YOON D, CHANDRA C, et al. Revealing sodium ion storage mechanism in hard carbon[J]. Carbon, 2019, 145: 67-81.
[12] [12] HOU H S, QIU X Q, WEI W F, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Adv Energy Mater, 2017, 7: 1602898.
[13] [13] GE P, FOULETIER M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics, 1988, 30: 1172-1175.
[14] [14] STEVENS D A, DAHN J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. J Electrochem Soc, 2001, 148(8): A803-A811.
[15] [15] LI Y M, HU Y S, QI X G, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: Towards practical applications[J]. Energy Storage Mater, 2016, 5: 191-197.
[16] [16] KIPLING J J, SHERWOOD J N, SHOOTER P V, et al. Factors influencing the graphitization of polymer carbons[J]. Carbon, 1964, 1(3): 315-318.
[17] [17] FRANKLIN R E. Crystallite growth in graphitizing and non- graphitizing carbons[J]. Proc R Soc Lon Ser-A, 1951, 209(1097): 196-218.
[18] [18] GILBERT J B, KIPLING J J, MCENANEY B, et al. Carbonization of polymers I-thermogravimetric analysis[J]. Polymer, 1962, 3(1): 1-10.
[19] [19] HONDA H, KOBAYASHI K, SUGAWARA S. X-ray characteristics of non-graphitizing-type carbon[J]. Carbon, 1968, 6(4): 517-523.
[20] [20] MORINOBU E, AGNS O, TSUNEO K. High resolution electron microscopy of graphitizable carbon fiber prepared by benzene decomposition[J]. Jpn J Appl Phys, 1977, 16(9): 1519-1523.
[21] [21] LU Y X, ZHAO C L, QI X G, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Adv Energy Mater, 2018, 8: 1800108.
[22] [22] QI Y R, LU Y X, LIU L L, et al. Retarding graphitization of soft carbon precursor: from fusion-state to solid-state carbonization[J]. Energy Storage Mater, 2020, 26: 577-584.
[23] [23] SUN N, GUAN Z R X, LIU Y W, et al. Extended “adsorption- insertion” model: A new insight into the sodium storage mechanism of hard carbons[J]. Adv Energy Mater, 2019, 9: 1901351.
[24] [24] LUO W, JIAN Z L, XING Z Y, et al. Electrochemically expandable soft carbon as anodes for Na-ion batteries[J]. ACS Cent Sci, 2015, 1(9): 516-522.
[25] [25] WENZEL S, HARA T, JANEK J, et al. Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies[J]. Energy Environ Sci, 2011, 4(9): 3342-3345.
[26] [26] FAN L, LIU Q, CHEN S H, et al. Soft carbon as anode for high-performance sodium-based dual ion full battery[J]. Adv Energy Mater, 2017, 7: 1602778.
[27] [27] TANG K, FU L J, WHITE R J, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Adv Energy Mater, 2012, 2(7): 873-877.
[28] [28] YU L Q, SONG H H, LI Y T, et al. Rod-like ordered mesoporous carbons with various lengths as anode materials for sodium ion battery[J]. Electrochim Acta, 2016, 218: 285-293.
[29] [29] DASOG M, KEHRLE J, RIEGER B, et al. Silicon nanocrystals and silicon-polymer hybrids: synthesis, surface engineering, and applications[J]. Angew Chem Int Ed, 2016, 55(7): 2322-2339.
[30] [30] HESSEL C M, REID D, PANTHANI M G, Synthesis of ligand- stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths[J]. Chem Mater, 2012, 24(2): 393-401.
[31] [31] ZHAO H Q, YE J Q, SONG W, et al. Insights into the surface oxygen functional group-driven fast and stable sodium adsorption on carbon[J]. ACS Appl Mater Inter, 2020, 12(6): 6991-7000.
[32] [32] EMMERICH F G. Evolution with heat treatment of crystallinity in carbons[J]. Carbon, 1995, 33(12): 1709-1715.
[33] [33] KIPLING J J, SHERWOOD, J N, SHOOTER P V, et al. Factors influencing the graphitization of polymer carbons[J]. Carbon, 1964, 1(3): 315-318.
[34] [34] WANG Boyang. Preparation of coal-based carbon anode materials and its electrochemical performance in sodium ion batteries[D]. Dalian: Dalian University of Technology, 2021.
[35] [35] ZHUANG Z H, CUI Y L, ZHU H G, et al. Coal-based amorphous carbon as economical anode material for sodium-ion battery[J]. J Electrochem Soc, 2018, 165(10): A2225-A2232.
[36] [36] ZHAO Dan. Investigation of sodium storage performance in oxygen-functionalized coal-based carbon materials[D]. Taiyuan: Taiyuan University of Technology, 2020.
[37] [37] SHAO M, CHENG Y Y, ZHANG T, et al. Designing MOFs-derived FeS2@carbon composites for high-rate sodium ion storage with capacitive contributions[J]. ACS Appl Mater Inter, 2018, 10(39): 33097-33104.
[38] [38] LI S, XUE P, LAI C, et al. Pseudocapacitance of amorphous TiO2@nitrogen doped graphene composite for high rate lithium storage[J]. Electrochim Acta, 2015, 180: 112-119.
[39] [39] WANG J, POLLEUX J L, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. J Phys Chem C, 2007, 111(40): 14925-14931.
[40] [40] CAO B, LIU H, XU B, et al. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance[J]. J Mater Chem A, 2016, 4(17): 6472-6478.
[41] [41] DONG R Q, ZHENG L M, BAI Y, et al. Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes[J]. Adv Mater, 2021, 33: 2008810.
Get Citation
Copy Citation Text
LI Fangyu, TAO Huachao, LIU Xinyu, YANG Xuelin. Pyrolyzed Hydrogenated Anthracite as Anode Materials for Sodium-ion Batteries[J]. Journal of the Chinese Ceramic Society, 2022, 50(7): 1890
Category:
Received: Oct. 20, 2021
Accepted: --
Published Online: Dec. 6, 2022
The Author Email: Fangyu LI (li15377016685@163.com)
CSTR:32186.14.