Infrared and Laser Engineering, Volume. 53, Issue 1, 20230364(2024)

Research of IRFPA ROIC for astronomy

Qinghua Liang, Yanfeng Wei, Honglei Chen, Jing Guo, and Ruijun Ding*
Author Affiliations
  • National Key Laboratory of Infrared Detection Technologies, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less
    Figures & Tables(31)
    Structure of SFD circuit
    Circuit block diagram
    Structure of analog circuit
    Structure of OTA
    Analog signal chain and current bias diagram
    Structure of current bias
    Layout of corecell circuit
    Controlling time series of simulation(NDR=0)
    Controlling time series of simulation(NDR=1)
    Structure of SR latch
    Structure of NDR circuit 1
    Simulation result of NET1
    Structure of NDR circuit 2
    Simulation result of NET3
    Simulation result of INTRST(NDR=0)
    Simulation result of INTRST(NDR=1)
    Diagram of non-destructive readout function
    Relationship diagram between signal and time
    Relationship between output voltage and photocurrent
    Sample picture of IRFPA
    Test system of long integration time
    Average voltage of FPA vs integration time
    Dark current of 640×512 IRFPA
    Test results of dark current
    Dark current under different power consumption
    Dark current under different power consumption
    Signal voltage vs integration time
    Test result of circuit noise (5 fF)
    • Table 1. Performance of IRFPA for international astronomical application

      View table
      View in Article

      Table 1. Performance of IRFPA for international astronomical application

      ProductHawii−2RGVIRGOALFA
      CompanyTeledyneRaytheonSofradir
      Resolution2 k×2 k2 k×2 k2 k×2 k
      Pixel pitch18 μm20 μm15 μm
      Detection band0.6-2.5 μm0.85-2.5 μm0.8-2.5 μm
      Temperature77 K78 K100 K
      Dark current$ \leqslant $0.05 e-·s−1$ \leqslant $1 e-·s−1$ \leqslant $0.1 e-·s−1
      Readout noise$ \leqslant $18 e-rms$ \leqslant $20 e-rms$ \leqslant $18 e-rms
      Charge capacity$ \geqslant $80 ke->200 ke-$ \geqslant $60 ke-
      Power consumption$ \leqslant $1 mW(100 kHz)$ \leqslant $7 mW(280 kHz)$ \leqslant $2.8 mW(100 kHz)
      Nonlinearity-$ < \pm $0.3%$ \leqslant $3%
    • Table 2. Dark current under different power consumption

      View table
      View in Article

      Table 2. Dark current under different power consumption

      TEST1TEST2TEST3
      VADJ3.33.32.1
      IM(1-0)000001
      UP(2-0)000010010
      AP(1-0)000001
      DP(1-0)000000
      Total working current3.9 mA7.7 mA10.9 mA
      Power consumption14.04 mW27.2 mW39.24 mW
      Dark current0.9 e-·s−12.2 e-·s−12.8 e-·s−1
    • Table 3. Performance parameters of FPA

      View table
      View in Article

      Table 3. Performance parameters of FPA

      SpecificationPerformance
      Array Size640×512
      Pixel pitch15 μm
      Cut−off wavelength1.7 μm
      Charge capacity35.9 ke-
      Noise27 e-
      Responsivity mean2.58×$ {10}^{7} $ V/W
      Peak detectivity mean2.62×$ {10}^{13} $ cm·Hz1/2/W
      Uniformity1.58%
    Tools

    Get Citation

    Copy Citation Text

    Qinghua Liang, Yanfeng Wei, Honglei Chen, Jing Guo, Ruijun Ding. Research of IRFPA ROIC for astronomy[J]. Infrared and Laser Engineering, 2024, 53(1): 20230364

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 14, 2023

    Accepted: --

    Published Online: Mar. 19, 2024

    The Author Email: Ding Ruijun (DingRj@mail.sitp.ac.cn)

    DOI:10.3788/IRLA20230364

    Topics