Laser & Optoelectronics Progress, Volume. 58, Issue 18, 1811010(2021)

Research Progress on Photon Counting Imaging Algorithms

Songmao Chen1,2,3,4, Wei Hao1,2,3,4、*, Xiuqin Su1,2,3,4, Zhenyang Zhang1,2,3,4,5, and Weihao Xu1,2,5
Author Affiliations
  • 1Key Laboratory of Space Precision Measurement Technology, Chinese Academy of Sciences, Xi'an, Shaanxi 710119 China
  • 2Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi 710119 China
  • 3Joint Laboratory for Ocean Observation and Detection(Xi'an Institute of Optics and Precision Mechanics), Qingdao, Shandong 266200, China
  • 4Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266200, China
  • 5University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(77)

    [1] Wallace A M, Halimi A, Buller G S. Full waveform LiDAR for adverse weather conditions[J]. IEEE Transactions on Vehicular Technology, 69, 7064-7077(2020).

    [2] Velten A, Willwacher T, Gupta O et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging[J]. Nature Communications, 3, 745(2012).

    [3] Connolly P W R, Valli J, Shah Y D et al. Simultaneous multi-spectral, single-photon fluorescence imaging using aplasmonic colour filter array[J]. Journal of Biophotonics, 14, e202000505(2021).

    [4] Liu Y X, Fan Q, Li X Y et al. Realization of silicon single-photon detector with ultra-low dark count rate[J]. Acta Optica Sinica, 40, 1004001(2020).

    [5] Becker W. Advanced time-correlated single photon counting techniques[M]. Qu J, Transl(2009).

    [6] Chen S M. Research on coding technique and image reconstruction algorithm based on single photon detection[D], 11-56(2020).

    [7] Tachella J, Altmann Y, Ren X et al. Bayesian 3D reconstruction of complex scenes from single-photon lidar data[J]. SIAM Journal on Imaging Sciences, 12, 521-550(2019).

    [8] Kirmani A, Venkatraman D, Shin D et al. First-photon imaging[J]. Science, 343, 58-61(2014).

    [9] Altmann Y, Ren X M, McCarthy A et al. Lidar waveform-based analysis of depth images constructed using sparse single-photon data[J]. IEEE Transactions on Image Processing, 25, 1935-1946(2016).

    [10] Tobin R, Halimi A, McCarthy A et al. Long-range depth profiling of camouflaged targets using single-photon detection[J]. Optical Engineering, 57, 031303(2017).

    [11] Kang Y. Research on single photon counting lidar 3D imaging technology with a few echo photons[D], 40-44(2019).

    [12] Tachella J, Altmann Y, Mellado N et al. Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers[J]. Nature Communications, 10, 4984(2019).

    [13] Ge P, Guo J J, Chen C et al. Photon-counting 3D imaging based on Geiger-mode APD array[J]. Infrared and Laser Engineering, 49, 0305007(2020).

    [14] Maccarone A, Rocca F M D, McCarthy A et al. Three-dimensional imaging of stationary and moving targets in turbid underwater environments using a single-photon detector array[J]. Optics Express, 27, 28437-28456(2019).

    [15] Kong L D, Zhao Q Y, Tu X C et al. Progress and applications of superconducting nanowire delay-line single-photon imagers[J]. Laser & Optoelectronics Progress, 58, 1011002(2021).

    [16] Rapp J, Tachella J, Altmann Y et al. Advances in single-photon lidar for autonomous vehicles: working principles, challenges, and recent advances[J]. IEEE Signal Processing Magazine, 37, 62-71(2020).

    [17] Halimi A, Altmann Y, McCarthy A et al. Restoration of intensity and depth images constructed using sparse single-photon data[C]. //2016 24th European Signal Processing Conference (EUSIPCO), August 29-September 2, 2016, Budapest, Hungary., 86-90(2016).

    [18] Lindell D B, O’Toole M, Wetzstein G. Single-photon 3D imaging with deep sensor fusion[J]. ACM Transactions on Graphics, 37, 1-12(2018).

    [19] Shin D, Kirmani A, Goyal V K et al. Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors[J]. IEEE Transactions on Computational Imaging, 1, 112-125(2015).

    [20] Li Z P, Ye J T, Huang X et al. Single-photon imaging over 200 km[J]. Optica, 8, 344-349(2021).

    [21] Li Z P, Huang X, Cao Y et al. Single-photon computational 3D imaging at 45 km[J]. Photonics Research, 8, 1532-1540(2020).

    [22] Shao Y, Wang D J, Zhang D et al. Research progress of single photon laser ranging technology[J]. Laser & Optoelectronics Progress, 58, 1011020(2021).

    [23] Tobin R, Halimi A, McCarthy A et al. Three-dimensional single-photon imaging through obscurants[J]. Optics Express, 27, 4590-4611(2019).

    [24] Jiang P Y, Li Z P, Xu F H. Compact long-range single-photon imager with dynamic imaging capability[J]. Optics Letters, 46, 1181-1184(2021).

    [25] Altmann Y, McLaughlin S, Padgett M J et al. Quantum-inspired computational imaging[J]. Science, 361, eaat2298(2018).

    [26] He W J, Sima B Y, Chen Y F et al. A correction method for range walk error in photon counting 3D imaging LiDAR[J]. Optics Communications, 308, 211-217(2013).

    [27] Shin D, Shapiro J H, Goyal V K. Performance analysis of low-flux least-squares single-pixel imaging[J]. IEEE Signal Processing Letters, 23, 1756-1760(2016).

    [28] Chen S M, Halimi A, Ren X M et al. Learning non-local spatial correlations to restore sparse 3D single-photon data[J]. IEEE Transactions on Image Processing, 29, 3119-3131(2019).

    [29] Rapp J, Goyal V K. A few photons among many:unmixing signal and noise for photon-efficient active imaging[J]. IEEE Transactions on Computational Imaging, 3, 445-459(2017).

    [31] Pawlikowska A M, Halimi A, Lamb R A et al. Single-photon three-dimensional imaging at up to 10 kilometers range[J]. Optics Express, 25, 11919-11931(2017).

    [32] Kong H J, Kim T H, Jo S E et al. Smart three-dimensional imaging ladar using two Geiger-mode avalanche photodiodes[J]. Optics Express, 19, 19323-19329(2011).

    [34] Maccarone A, Halimi A, McCarthy A et al. Underwater three-dimensional imaging using single-photon detection[C]. //2017 Conference on Lasers and Electro-Optics (CLEO), May 14-19, 2017, San Jose, California, SF2M, 2(2017).

    [35] Peng X, Zhao X Y, Li L J et al. First-photon imaging via a hybrid penalty[J]. Photonics Research, 8, 325-330(2020).

    [36] Peng J Y, Xiong Z W, Huang X et al. Photon-efficient 3D imaging with a non-local neural network[M]. //Vedaldi A, Bischof H, Brox T, et al. Computer vision-ECCV 2020. Lecture notes in computer science, 12351, 225-241(2020).

    [37] Hua K J, Liu B, Chen Z et al. Efficient and noise robust photon-counting imaging with first signal photon unit method[J]. Photonics, 8, 229(2021).

    [38] Altmann Y, Wallace A, McLaughlin S. Spectral unmixing of multispectral lidar signals[J]. IEEE Transactions on Signal Processing, 63, 5525-5534(2015).

    [39] Altmann Y, Maccarone A, Halimi A et al. Efficient range estimation and material quantification from multispectral lidar waveforms[C]. //2016 Sensor Signal Processing for Defence (SSPD), September 22-23, 2016, Edinburgh, UK., 1-5(2016).

    [40] Altmann Y, Maccarone A, McCarthy A et al. Joint spectral clustering and range estimation for 3D scene reconstruction using multispectral lidar waveforms[C]. //2016 24th European Signal Processing Conference (EUSIPCO), August 29-September 2, 2016, Budapest, Hungary., 513-517(2016).

    [41] Chhabra P, Maccarone A, McCarthy A et al. Discriminating underwater LiDAR target signatures using sparse multi-spectral depth codes[C]. //2016 Sensor Signal Processing for Defence (SSPD), September 22-23, 2016, Edinburgh, UK., 1-5(2016).

    [42] Ren X M, Altmann Y, Tobin R et al. Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR[J]. Optics Express, 26, 30146-30161(2018).

    [43] Legros Q, Meignen S, McLaughlin S et al. Expectation-maximization based approach to 3D reconstruction from single-waveform multispectral lidar data[J]. IEEE Transactions on Computational Imaging, 6, 1033-1043(2020).

    [44] Tachella J, Altmann Y, Márquez M et al. Bayesian 3D reconstruction of subsampled multispectral single-photon lidar signals[J]. IEEE Transactions on Computational Imaging, 6, 208-220(2019).

    [45] Chen S M, Hao W, Su X Q et al. Restoration of sparse multispectral single photon lidar data[C]. //2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), August 21-24, 2020, Macao, China., 1-5(2020).

    [47] Tian X, Chen W, Wang Z Y et al. Polarization prior to single-photon counting image denoising[J]. Optics Express, 29, 21664-21682(2021).

    [49] Shin D, Xu F H, Wong F N C et al. Computational multi-depth single-photon imaging[J]. Optics Express, 24, 1873-1888(2016).

    [50] Halimi A, Tobin R, McCarthy A et al. Robust restoration of sparse multidimensional single-photon LiDAR images[J]. IEEE Transactions on Computational Imaging, 6, 138-152(2019).

    [51] Aßmann A, Stewart B, Wallace A M. Deep learning for LiDAR waveforms with multiple returns[C]. //2020 28th European Signal Processing Conference (EUSIPCO), January 18-21, 2021, Amsterdam, Netherlands., 1571-1575(2021).

    [52] Tan H, Peng J Y, Xiong Z W et al. Deep learning based single-photon 3D imaging with multiple returns[C]. //2020 International Conference on 3D Vision (3DV), November 25-28, 2020, Fukuoka, Japan., 1196-1205(2020).

    [53] Sun Q L, Zhang J, Dun X et al. End-to-end learned, optically coded super-resolution SPAD camera[J]. ACM Transactions on Graphics, 39, 1-14(2020).

    [54] Li Z P, Huang X, Jiang P Y et al. Super-resolution single-photon imaging at 8.2 kilometers[J]. Optics Express, 28, 4076-4087(2020).

    [56] Gyongy I, Hutchings S W, Halimi A et al. High-speed 3D sensing via hybrid-mode imaging and guided upsampling[J]. Optica, 7, 1253-1260(2020).

    [57] Ruget A, McLaughlin S, Henderson R K et al. Robust super-resolution depth imaging via a multi-feature fusion deep network[J]. Optics Express, 29, 11917-11937(2021).

    [58] Rapp J, Dawson R M A, Goyal V K. Dithered depth imaging[J]. Optics Express, 28, 35143-35157(2020).

    [59] Ren X Y, Xu B, Fei Q L et al. Single-photon counting laser ranging with optical frequency combs[J]. IEEE Photonics Technology Letters, 33, 27-30(2021).

    [60] Arellano V, Gutierrez D, Jarabo A. Fast back-projection for non-line of sight reconstruction[J]. Optics Express, 25, 11574-11583(2017).

    [61] La Manna M, Kine F, Breitbach E et al. Error backprojection algorithms for non-line-of-sight imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 1615-1626(2019).

    [62] O’Toole M, Lindell D B, Wetzstein G. Confocal non-line-of-sight imaging based on the light-cone transform[J]. Nature, 555, 338-341(2018).

    [63] Xin S M, Nousias S, Kutulakos K N et al. A theory of Fermat paths for non-line-of-sight shape reconstruction[C]. //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA., 6793-6802(2019).

    [64] Lindell D B, Wetzstein G, O’Toole M. Wave-based non-line-of-sight imaging using fast f-k migration[J]. ACM Transactions on Graphics, 38, 1-13(2019).

    [65] Liu X C, Guillén I, La Manna M et al. Non-line-of-sight imaging using phasor-field virtual wave optics[J]. Nature, 572, 620-623(2019).

    [67] Liu X C, Bauer S, Velten A. Phasor field diffraction based reconstruction for fast non-line-of-sight imaging systems[J]. Nature Communications, 11, 1645(2020).

    [68] Wu C, Liu J J, Huang X et al. Non-line-of-sight imaging over 1.43 km[J]. Proceedings of the National Academy of Sciences of USA, 118, e2024468118(2021).

    [69] Ye J T, Huang X, Li Z P et al. Compressed sensing for active non-line-of-sight imaging[J]. Optics Express, 29, 1749-1763(2021).

    [70] Ahn B, Dave A, Veeraraghavan A et al. Convolutional approximations to the general non-line-of-sight imaging operator[C]. //2019 IEEE/CVF International Conference on Computer Vision (ICCV), October 27-November 2, 2019, Seoul, Korea (South)., 7888-7898(2019).

    [71] Cho P, Anderson H, Hatch R et al. Real-time 3-D ladar imaging[C]. //2006 HPCMP Users Group Conference (HPCMP-UGC’06), June 26-29, 2006, Denver, CO, USA., 321-326(2006).

    [72] Tachella J, Altmann Y, McLaughlin S et al. Real-time 3D color imaging with single-photon lidar data[C]. //2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), December 15-18, 2019, Le Gosier, Guadeloupe., 206-210(2019).

    [73] Aßmann A, Wu Y, Stewart B et al. Accelerated 3D image reconstruction for resource constrained systems[C]. //2020 28th European Signal Processing Conference (EUSIPCO), January 18-21, 2021, Amsterdam, Netherlands., 565-569(2021).

    [74] Legros Q, Tachella J, Tobin R et al. Robust 3D reconstruction of dynamic scenes from single-photon lidar using beta-divergences[J]. IEEE Transactions on Image Processing, 30, 1716-1727(2020).

    [75] Altmann Y, McLaughlin S, Davies M E. Fast online 3D reconstruction of dynamic scenes from individual single-photon detection events[J]. IEEE Transactions on Image Processing, 29, 2666-2675(2019).

    [77] Rapp J, Ma Y T, Dawson R M A et al. High-flux single-photon lidar[J]. Optica, 8, 30-39(2021).

    Tools

    Get Citation

    Copy Citation Text

    Songmao Chen, Wei Hao, Xiuqin Su, Zhenyang Zhang, Weihao Xu. Research Progress on Photon Counting Imaging Algorithms[J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Jul. 4, 2021

    Accepted: Aug. 16, 2021

    Published Online: Sep. 3, 2021

    The Author Email: Hao Wei (hwei@opt.ac.cn)

    DOI:10.3788/LOP202158.1811010

    Topics