Acta Optica Sinica, Volume. 35, Issue s1, 116002(2015)

Effect of TiO6 Octahedron Structure Defects on the Electronic Structure and Optical Properties of CaCu3Ti4O12 by First-Principles

Yang Wenlong1、*, Xiu Hanjiang1, Xiong Yanling1, Wang Li1, and Sun Hongguo2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(34)

    [1] [1] Deschanvres A, Raveau B, Tollemer F. Substitution of copper for a divalent metal in perovskite-type titanates[J]. Bull Soc Chim Fr, 1967, 11: 4077-4078.

    [2] [2] Subramanian M A, Li D, Duan N, et al.. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases[J]. J Solid State Chem, 2000, 151(2): 323-325.

    [3] [3] Ramirez A P, Subramanian M A, Gardel M, et al.. Giant dielectric constant response in a copper-titanate[J]. Solid State Commun, 2000, 115(5): 217-220.

    [4] [4] Bodeux R, Gervais M, Wolfman J, et al.. Electrical parameters of Schottky contacts in CaCu3Ti4O12 thin film capacitors[J]. Appl Phys A Mater, 2014, 116(4): 1-6.

    [5] [5] Thongbai P, Jumpatam J, Putasaeng B, et al.. Effects of La3+ doping ions on dielectric properties and formation of Schottky barriers at internal interfaces in a Ca2Cu2Ti4O12 composite system[J]. J Mater Sci Mater El, 2014, 25(10): 4657-4663.

    [6] [6] Liu Y, Chen Q, Zhao X. Dielectric response of Sb-doped CaCu3Ti4O12 ceramics[J]. J Mater Sci-mater El, 2014, 25(3): 1547-1552.

    [7] [7] Xu L F, Cheng T, Wang R L, et al.. Microstructure and dielectric properties of Ca1–3/2xBixCu3Ti4O12 (x=0, 0.05, 0.10, 0.15 and 0.20) ceramics[J]. J Mater Sci Mater El, 2014, 25(2): 817-823.

    [8] [8] Chi Q G, Zhang C H, Wang X, et al.. Dielectric properties of PI hybrid film doped by CaCu3Ti3.95Zr0.05O12 ceramics with different particle sizes[J]. Ceram Int, 2014, 40(9): 15045-15049.

    [9] [9] Jia Ran, Gu Fang, Wu Zhenhua, et al.. Dielectric properties of CaCu3Ti4O12 ceramics prepared by a simplified coprecipitation method[J]. Acta Physica Sinica, 2012, 61(20): 466-472.

    [10] [10] Xu Dong, Song Qi, Zhang Ke, et al.. NiO-doped CaCu3Ti4O12 thin film by Sol-Gel method[J]. J Inorg Mater, 2013, 28(11): 1270-1274.

    [11] [11] Kumar P, Agrawal D C. Dielectric and optical properties of CaCu3Ti4O12 thin films containing Ag nanoparticles[J]. Mater Lett, 2010, 64(3): 350-352.

    [12] [12] Homes C C, Vogt T, Shapiro S M, et al.. Optical response of high-dielectric-constant perovskite-related oxide[J]. Science, 2001, 293(5530): 673-676.

    [13] [13] Ke S, Huang H, Fan H. Relaxor behavior in CaCu3Ti4O12 ceramics[J]. Appl Phys Lett, 2006, 89(18): 182904.

    [14] [14] Liu Y, Withers R L, Wei X Y. Structurally frustrated relaxor ferroelectric behavior in CaCu3Ti4O12[J]. Phys Rev B, 2005, 72(13): 134104.

    [15] [15] Adams T B, Sinclair D C, West A R. Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics[J]. Adv Mater, 2002, 14(18): 1321-1323.

    [16] [16] Sinclair D C, Adams T B, Morrison F D. CaCu3Ti4O12: One-step internal barrier layer capacitor[J]. Appl Phys Lett, 2002, 80(12): 2153-2155.

    [17] [17] Patel P K, Yadav K L. Extrinsic mechanism for colossal dielectric constant in CaCu3Ti4O12 ceramics evidenced by nanodomain[J]. Mater Res Exp, 2014, 1(1): 015037.

    [18] [18] Kretly L C, Almeida A F L, Oliveira R S D, et al.. Electrical and optical properties of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas[J]. Microw Opt Techn Let, 2003, 39(2): 145-150.

    [19] [19] Litvinchuk A P, Chen C L, Kolev N, et al.. Optical properties of high-dielectric-constant CaCu3Ti4O12 films[J]. physica status solidi (a), 2003, 195(2): 453-458.

    [20] [20] Liang K C, Liu H L, Yang H D, et al.. Structural and optical studies of high dielectric constant (Na0.5A0.5) Cu3Ti4O12 (A= La and Bi)[J]. Journal of Physics: Condensed Matter, 2008, 20(27): 275238.

    [21] [21] Wu L, Ling F, Liu T, et al.. Dielectric behavior of CaCu3Ti4O12 ceramics in the terahertz range[J]. Optics express, 2011, 19(6): 5118-5125.

    [22] [22] Cohen R E. Origin of ferroelectricity in perovskite oxides[J]. Nature, 1992, 358(6382): 136-138.

    [23] [23] Sun H G, Zhou Z X, Yuan C X, et al.. Structural, electronic and optical properties of KTa0.5Nb0.5O3 surface: A first-principles study[J]. Chin Phys Lett, 2012, 29(1): 017303.

    [24] [24] Xue Weidong, Cai Jun, Wang Mingxi, et al.. First-principle study on SrTiO3 film oxygen imperfection[J]. Journal of Atomic and Molecular Physics, 2007, 24(4): 875-878.

    [25] [25] Zhao Qingxun, Wang Shubiao, Guan Li, et al.. First-principles study on the electronic structure of ferroelectric Pb(Zr0.4Ti0.6)O3[J]. Journal of Atomic and Molecular Physics, 2007, 24(5): 951-956.

    [27] [27] Ricci F, Alippi P, Filippetti A, et al.. Multigap absorption in CaCu3Ti4O12 and the prediction capability of ab initio methods[J]. Phys Rev B, 2014, 90(4): 045132.

    [28] [28] He L, Neaton J B, Vanderbilt D, et al.. Lattice dielectric response of CdCu3Ti4O12 and CaCu3Ti4O12 from first principles[J]. Phys Rev B, 2003, 67(1): 012103.

    [29] [29] Xiao H B, Yang C P, Huang C, et al.. Influence of oxygen vacancy on the electronic structure of CaCu3Ti4O12 and its deep-level vacancy trap states by first-principle calculation[J]. J Appl Phys, 2012, 111(6): 063713.

    [30] [30] Deng G, Muralt P. Annealing effects on electrical properties and defects of CaCu3Ti4O12 thin films deposited by pulsed laser deposition[J]. Phys Rev B, 2010, 81(22): 224111.

    [31] [31] Luo X J, Liu Y S, Yang C P, et al.. Oxygen vacancy related defect dipoles in CaCu3Ti 4O12: Detected by electron paramagnetic resonance spectroscopy[J]. J Eur ceram Soc, 2015, 35(7): 2073-2081.

    [32] [32] Subramanian M A, Sleight A W. ACu3Ti4O12 and ACu3Ru4O12 perovskites: High dielectric constants and valence degeneracy[J]. Solid State Sci, 2002, 4(3): 347-351.

    [33] [33] Wang C C, Zhang L W. Oxygen-vacancy-related dielectric anomaly in CaCu3Ti4O12: Post-sintering annealing studies[J]. Phys Rev B, 2006, 74(2): 024106.

    [34] [34] Jr M D, Wemple S H. Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects[J]. J Appl Phys, 1969, 40(2): 720-734.

    CLP Journals

    [1] Wang Junling, Duan Zeming, Cao Jinhao, Liu Zhiguo, Pan Qiuli, Li Rongwu, Cheng Lin. Study of Energy Dispersive X-Ray Scattering Technique with Polycapillary X-Ray Optics for Identification of Sorts of Liquids[J]. Acta Optica Sinica, 2016, 36(1): 129003

    Tools

    Get Citation

    Copy Citation Text

    Yang Wenlong, Xiu Hanjiang, Xiong Yanling, Wang Li, Sun Hongguo. Effect of TiO6 Octahedron Structure Defects on the Electronic Structure and Optical Properties of CaCu3Ti4O12 by First-Principles[J]. Acta Optica Sinica, 2015, 35(s1): 116002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Jan. 27, 2015

    Accepted: --

    Published Online: Jul. 27, 2015

    The Author Email: Wenlong Yang (wlyang@hrbust.edu.cn)

    DOI:10.3788/aos201535.s116002

    Topics