Laser Journal, Volume. 45, Issue 8, 203(2024)

Design of visual rebar detection system based on an improved YOLOv5

XIE Fangli1... LI Zhenghao2,3,*, ZHAO Xunyi2,3, ZHANG Zheng2, ZHENG Lixi4, LIN Xixiang2,3, and LI Xiangdong23 |Show fewer author(s)
Author Affiliations
  • 1Chongqing Institute of Engineering, Chongqing 400056, China
  • 2Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
  • 3Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
  • 4Chongqing Infopro Technology Co., Ltd, Chongqing 404100, China
  • show less
    References(9)

    [3] [3] Ye T, Qin W, Li Y, et al. Dense and Small Object Detection in UAV-Vision Based on a Global-Local Feature Enhanced Network[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-13.

    [6] [6] Liu H, Wang D, Xu K, et al. Lightweight Convolutional Neural Network for Counting Densely Piled Steel Bars[J]. Automation in Construction, 2023, 146: 104692.

    [7] [7] Chen H, Du Y, Fu Y, et al. DCAM-Net: A Rapid Detection Network for Strip Steel Surface Defects Based on Deformable Convolution and Attention Mechanism[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72:1-12.

    [10] [10] Li Y, Lu Y, Chen J. A Deep Learning Approach for Real-Time Rebar Counting on the Construction Site Based on YOLOv3 Detector[J]. Automation in Construction, 2021, 124: 103602.

    [11] [11] Redmon J, Divvala S, Girshick R, et al. You Only Look Once Unified, Real-Time Object Detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 779-788.

    [12] [12] Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, 7132-7141.

    [13] [13] Hu J, Shen L, Albanie S, et al. Squeeze-and-Excitation Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.

    [14] [14] Jeong E, Kim J, Tan S, et al. Deep Learning Inference Parallelization on Heterogeneous Processors with TensorRT[J]. IEEE Embedded Systems Letters, 2022, 14(1): 15-18.

    [15] [15] Jeong E, Kim J, Ha S. TensorRT-Based Framework and Optimization Methodology for Deep Learning Inference on Jetson Boards[J]. ACM Transactions on Embedded Computing Systems, 2022, 21(5): 1-26.

    Tools

    Get Citation

    Copy Citation Text

    XIE Fangli, LI Zhenghao, ZHAO Xunyi, ZHANG Zheng, ZHENG Lixi, LIN Xixiang, LI Xiangdong. Design of visual rebar detection system based on an improved YOLOv5[J]. Laser Journal, 2024, 45(8): 203

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 17, 2023

    Accepted: Dec. 20, 2024

    Published Online: Dec. 20, 2024

    The Author Email: Zhenghao LI (lizh@cigit.ac.cn)

    DOI:10.14016/j.cnki.jgzz.2024.08.203

    Topics