Chinese Optics Letters, Volume. 20, Issue 7, 070201(2022)

Automatic, long-term frequency-stabilized lasers with sub-hertz linewidth and 10−16 frequency instability

Chengzhi Yan, Haosen Shi*, Yuan Yao, Hongfu Yu, Yanyi Jiang**, and Longsheng Ma
Author Affiliations
  • State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • show less
    References(36)

    [1] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, P. O. Schmidt. Optical atomic clocks. Rev. Mod. Phys., 87, 637(2015).

    [2] Y. Li, Y. Lin, Q. Wang, T. Yang, Z. Sun, E. Zang, Z. Fang. An improved strontium lattice clock with 10–16 level laser frequency stabilization. Chin. Opt. Lett., 16, 051402(2018).

    [3] B. Willke, K. Danzmann, M. Frede, P. King, D. Kracht, P. Kwee, O. Puncken, R. L. Savage, B. Schulz, F. Seifert, C. Veltkamp, S. Wagner, P. Webels, L. Winkelmann. Stabilized lasers for advanced gravitational wave detectors. Class. Quantum Grav., 25, 114040(2008).

    [4] Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, L. Ma. A low noise optical frequency synthesizer at 700–990 nm. Appl. Phys. Lett., 109, 131102(2016).

    [5] T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams. Generation of ultrastable microwaves via optical frequency division. Nat. Photonics, 5, 425(2011).

    [6] S. Herrmann, A. Senger, K. Möhle, M. Nagel, E. V. Kovalchuk, A. Peters. Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level. Phys. Rev. D, 80, 105011(2009).

    [7] F. Zhang, K. Liu, Z. Li, F. Cheng, X. Feng, K. Li, Z. Lu, J. Zhang. Long-term digital frequency-stabilized laser source for large-scale passive laser gyroscopes. Rev. Sci. Instrum., 91, 013001(2020).

    [8] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B, 31, 97(1983).

    [9] B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist. Visible lasers with subhertz linewidths. Phys. Rev. Lett., 82, 3799(1999).

    [10] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, C. W. Oates. Making optical atomic clocks more stable with 10−16-level laser stabilization. Nat. Photonics, 5, 158(2011).

    [11] B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, G. Santarelli. Prototype of an ultra-stable optical cavity for space applications. Opt. Express, 20, 25409(2012).

    [12] Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, H. Jiang. Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth. Chin. Phys. Lett., 34, 090602(2017).

    [13] N. Nemitz, T. Ohkubo, M. Takamto, I. Ushijima, M. Das, N. Ohmae, H. Katori. Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time. Nat. Photonics, 10, 258(2016).

    [14] L. Jin, Y. Jiang, Y. Yao, H. Yu, Z. Bi, L. Ma. Laser frequency instability of 2 × 10−16 by stabilizing to 30-cm-long Fabry-Pérot cavities at 578 nm. Opt. Express, 26, 18699(2018).

    [15] D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, U. Sterr. 1.5 µm lasers with sub-10 mHz linewidth. Phys. Rev. Lett., 118, 263202(2017).

    [16] W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, J. Ye. Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K. Phys. Rev. Lett., 119, 243601(2017).

    [17] S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, U. Sterr. 8 × 10−17 fractional laser frequency instability with a long room-temperature cavity. Opt. Lett., 40, 2112(2015).

    [18] K. Numata, A. Kemery, J. Camp. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett., 93, 250602(2004).

    [19] M. A. Norcia, J. R. K. Cline, J. A. Muniz, J. M. Robinson, R. B. Hutson, A. Goban, G. E. Marti, J. Ye, J. K. Thompson. Frequency measurements of superradiance from the strontium clock transition. Phys. Rev. X, 8, 021036(2018).

    [20] L. Jin, C. Hang, Y. Y. Jiang, C. J. Zhu, Z. Zheng, Y. Yao, G. X. Huang, L. S. Ma. Towards generation of millihertz-linewidth laser light with 10−18 frequency instability via four-wave mixing. Appl. Phys. Lett., 114, 051104(2019).

    [21] D. R. Leibrandt, M. J. Thorpe, M. Notcutt, R. E. Drullinger, T. Rosenband, J. C. Bergquist. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments. Opt. Express, 19, 3471(2011).

    [22] S. Webster, P. Gill. Force-insensitive optical cavity. Opt. Lett., 36, 3572(2011).

    [23] Q.-F. Chen, A. Nevsky, M. Cardace, S. Schiller, T. Legero, S. Häfner, A. Uhde, U. Sterr. A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1 × 10−15. Rev. Sci. Instrum., 85, 113107(2014).

    [24] X. Chen, Y. Jiang, B. Li, H. Yu, H. Jiang, T. Wang, Y. Yao, L. Ma. Laser frequency instability of 6 × 10−16 using 10-cm-long cavities on a cubic spacer. Chin. Opt. Lett., 18, 030201(2020).

    [25] J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, Ch. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, D. Calonico. Geodesy and metrology with a transportable optical clock. Nat. Phys., 14, 437(2018).

    [26] M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, H. Katori. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photonics, 14, 411(2020).

    [27] H. Chen, Y. Jiang, S. Fang, Z. Bi, L. Ma. Frequency stabilization of Nd:YAG lasers with a most probable linewidth of 0.6 Hz. J. Opt. Soc. Am. B, 30, 1546(2013).

    [28] J. Luo, L.-S. Chen, H.-Z. Duan, Y.-T. Gong, S. Hu, J. Li, Q. Liu, J. Mei, V. Milyukov, M. Sazhin, C.-G. Shao, V. T. Toth, H.-B. Tu, Y. Wang, Y. Wang, H.-C. Yeh, M.-S. Zhan, Y. Zhang, V. Zharov, Z.-B. Zhou. TianQin: a space-borne gravitational wave detector. Class. Quantum Grav., 33, 035010(2016).

    [29] B. S. Sheard, G. Heinzel, K. Danzmann, D. A. Shaddock, W. M. Klipstein, W. M. Folkner. Intersatellite laser ranging instrument for the GRACE follow-on mission. J. Geodesy, 86, 1083(2012).

    [30] Y. Luo, H. Li, H.-C. Yeh. Note: digital laser frequency auto-locking for inter-satellite laser ranging. Rev. Sci. Instrum., 87, 056105(2016).

    [31] F. Allard, I. Maksimovic, M. Abgrall, Ph. Laurent. Automatic system to control the operation of an extended cavity diode laser. Rev. Sci. Instrum., 75, 54(2004).

    [32] X. Guo, L. Zhang, J. Liu, L. Chen, L. Fan, G. Xu, T. Liu, R. Dong, S. Zhang. An automatic frequency stabilized laser with hertz-level linewidth. Opt. Laser Technol., 145, 107498(2022).

    [33] A. Didier, S. Ignatovich, E. Benkler, M. Okhapkin, T. E. Mehlstäubler. 946-nm Nd:YAG digital-locked laser at 1.1×10−16 in 1 s and transfer-locked to a cryogenic silicon cavity. Opt. Lett., 44, 1781(2019).

    [34] L. S. Ma, P. Jungner, J. Ye, J. L. Hall. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett., 19, 1777(1994).

    [35] Y. Yao, Y. Jiang, H. Yu, Z. Bi, L. Ma. Optical frequency divider with division uncertainty at the 10–21 level. Natl. Sci. Rev., 3, 463(2016).

    [36] G. Yang, H. Shi, Y. Yao, H. Yu, Y. Jiang, A. Bartels, L. Ma. Long-term frequency-stabilized optical frequency comb based on a turnkey Ti:sapphire mode-locked laser. Chin. Opt. Lett., 19, 121405(2021).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Chengzhi Yan, Haosen Shi, Yuan Yao, Hongfu Yu, Yanyi Jiang, Longsheng Ma. Automatic, long-term frequency-stabilized lasers with sub-hertz linewidth and 10−16 frequency instability[J]. Chinese Optics Letters, 2022, 20(7): 070201

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atomic and Molecular Optics

    Received: Mar. 18, 2022

    Accepted: Apr. 24, 2022

    Published Online: May. 27, 2022

    The Author Email: Haosen Shi (hsshi@lps.ecnu.edu.cn), Yanyi Jiang (yyjiang@phy.ecnu.edu.cn)

    DOI:10.3788/COL202220.070201

    Topics