Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2722(2024)

Research Progress on Optical Functional Hybrid Gel Glass Devices

HUANG Zhaodi... TANG Xiaoyan, YANG Qingfang, WANG Jingjing and XIE Zheng* |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(64)

    [1] [1] WEI Y L, EBENDORFF-HEIDEPRIEM H, ZHAO J T. Recent advances in hybrid optical materials: Integrating nanoparticles within a glass matrix[J]. Adv Opt Mater, 2019, 7(21): 1900702.

    [2] [2] ALI M A, WINTERS W M W, MOHAMED M A, et al. Fabrication of super-sized metal inorganic-organic hybrid glass with supramolecular network via crystallization-suppressing approach[J]. Angew Chem Int Ed Engl, 2023, 62(14): e202218094.

    [3] [3] LIN R J, CHAI M, ZHOU Y H, et al. Metal-organic framework glass composites[J]. Chem Soc Rev, 2023, 52(13): 4149–4172.

    [4] [4] HARDER C, ALEXAKIS A E, BULUT Y, et al. Optical properties of slot-die coated hybrid colloid/cellulose-nanofibril thin films[J]. Adv Opt Mater, 2023, 11(13): 2203058.

    [5] [5] ZHAO X J, LUO X J, BAZUIN C G, et al. In situ growth of AuNPs on glass nanofibers for SERS sensors[J]. ACS Appl Mater Interfaces, 2020, 12(49): 55349–55361.

    [6] [6] DONG X Z, WANG Y F, GUAN R F, et al. Silane-functionalized carbon dots and their polymerized hybrids: From optoelectronics to biotherapy[J]. Small, 2021, 17(50): e2105273.

    [7] [7] PAN Q W, YANG D D, DONG G P, et al. Nanocrystal-in-glass composite (NGC): A powerful pathway from nanocrystals to advanced optical materials[J]. Prog Mater Sci, 2022, 130: 100998.

    [8] [8] ZHANG H, LI L C, WANG L Y, et al. Dinuclear indium phthalocyanine doped in PMMA glass used as nonlinear optical limiter[J]. Mol Syst Des Eng, 2023, 8(2): 240–250.

    [9] [9] FISCHER S, SALCHER A, KORNOWSKI A, et al. Completely miscible nanocomposites[J]. Angew Chem Int Ed, 2011, 50(34): 7811–7814.

    [10] [10] TOMCZAK N, JA?CZEWSKI D, HAN M Y, et al. Designer polymer–quantum dot architectures[J]. Prog Polym Sci, 2009, 34(5): 393–430.

    [11] [11] JA?CZEWSKI D, TOMCZAK N, HAN M Y, et al. Synthesis of functionalized amphiphilic polymers for coating quantum dots[J]. Nat Protoc, 2011, 6(10): 1546–1553.

    [12] [12] ZHANG H, CUI Z, WANG Y, et al. From water-soluble CdTe nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable surfactants[J]. Adv Mater, 2003, 15(10): 777–780.

    [13] [13] ZHANG H, HAN J S, YANG B. Structural fabrication and functional modulation of nanoparticle–polymer composites[J]. Adv Funct Mater, 2010, 20(10): 1533–1550.

    [14] [14] KIM Y H, LEE I, LEE H, et al. Sol–gel synthesized siloxane hybrid materials for display and optoelectronic applications[J]. J Sol Gel Sci Technol, 2023, 107(1): 32–45.

    [15] [15] JIN J, KO J H, YANG S, et al. Rollable transparent glass-fabric reinforced composite substrate for flexible devices[J]. Adv Mater, 2010, 22(40): 4510–4515.

    [16] [16] REN J, SUN X, WANG Y, et al. Controllable photoluminescent and nonlinear optical properties of polymerizable carbon dots and their arbitrary copolymerized gel glasses[J]. Adv Opt Mater, 2018, 6(12).

    [17] [17] WANG Y F, YIN Z M, XIE Z, et al. Polysiloxane functionalized carbon dots and their cross-linked flexible silicone rubbers for color conversion and encapsulation of white LEDs[J]. ACS Appl Mater Interfaces, 2016, 8(15): 9961–9968.

    [18] [18] XIE Z, HE H F, DENG Y H, et al. Three-arm star compounds composed of 1, 3, 5-tri(azobenzeneethynyl)benzene cores and flexible PEO arms: Synthesis, optical functions, hybrid Ormosil gel glasses[J]. J Mater Chem C, 2013, 1(9): 1791–1797.

    [19] [19] CHAO T Y, WANG J J, DONG X Z, et al. Defects and structural limitation-induced carbon dots-silica hybrid materials with ultralong room temperature phosphorescence[J]. J Phys Chem Lett, 2022, 13(41): 9558–9563.

    [20] [20] WANG F, XIE Z, ZHANG H, et al. Highly luminescent organosilane-functionalized carbon dots[J]. Adv Funct Mater, 2011, 21(6): 1027–1031.

    [21] [21] XIE Z, WANG F, LIU C Y. Organic-inorganic hybrid functional carbon dot gel glasses[J]. Adv Mater, 2012, 24(13): 1716–1721.

    [22] [22] LINGANNA K, RYU Y, NAEEM K, et al. Fabrication and characterization of highly Dy3+- and Tb3+-doped germano-borate glasses for magneto-optic device applications at 1.55 μm[J]. J Non Cryst Solids, 2022, 585: 121520.

    [23] [23] KILIC G, ILIK E, ISSA S A M, et al. Synthesis and structural, optical, physical properties of Gadolinium (III) oxide reinforced TeO2-B2O3- (20–x)Li2O-xGd2O3 glass system[J]. J Alloys Comp, 2021, 877: 160302.

    [24] [24] MARCONDES L M, RODRIGUES L, RAMOS DA CUNHA C, et al. Rare-earth ion doped niobium germanate glasses and glass-ceramics for optical device applications[J]. J Lumin, 2019, 213: 224–234.

    [25] [25] YANG H F, LI F H, SHAN C S, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement[J]. J Mater Chem, 2009, 19(26): 4632–4638.

    [26] [26] LI X K, SUN K, WU J J, et al. Thermal-triggered phase separation and ion exchange enables photoluminescence tuning of stable mixed-halide perovskite nanocrystals for dynamic display[J]. Laser Photonics Rev, 2024, 18(5): 2301244.

    [27] [27] SUN K, TAN D Z, FANG X Y, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 2022,375(6578): 307–310.

    [28] [28] SUN K, ZHANG B, GAO K, et al. Localized temperature engineering enables writing of heterostructures in glass for polarized photoluminescence of perovskites[J]. ACS Nano, 2024, 18(8): 6550–6557.

    [29] [29] KIM I S, CHO H, SOHN K S, et al. A study on the severe crazing phenomenon of the PMMA canopy under prolonged exposure to tropical climates[J]. Eng Fail Anal, 2021, 129: 105719.

    [30] [30] ZHANG Y J, GUO X T, WANG C H, et al. Self-polymerization and co-polymerization kinetics of lead methacrylate[J]. Rare Met, 2021, 40(3): 736–742.

    [31] [31] NAZNIN H, MALLIK A K, HOSSAIN K S, et al. Enhancement of thermal and mechanical properties of PMMA composites by incorporating mesoporous micro-silica and GO[J]. Results Mater, 2021, 11: 100203.

    [32] [32] MA G S, XIA L, YANG H, et al. Multifunctional lithium Aluminosilicate/CNT composite for gas filtration and electromagnetic wave absorption[J]. Chem Eng J, 2021, 418: 129429.

    [33] [33] LIN H, JIA H J, ZHOU L N, et al. Magneto-optical and fluorescence properties of Tb3+ doped glass-ceramics containing AlPO4[J]. J Non Cryst Solids, 2022, 579: 121377.

    [34] [34] YOUSSIF E, DOWEIDAR H, RAMADAN R. Bioactivity of microporous borate glass-ceramics prepared from solution and derived glasses[J]. J Non Cryst Solids, 2021, 557: 120649.

    [35] [35] XU Y D, ZHOU W C, ZHANG L T, et al. Spinnability and crystallizability of silica glass fiber by the sol–gel method[J]. J Mater Process Technol, 2000, 101(1–3): 44–46.

    [36] [36] KANEZASHI M, SASAKI T, TAWARAYAMA H, et al. Hydrogen permeation properties and hydrothermal stability of sol–gel-derived amorphous silica membranes fabricated at high temperatures[J]. J Am Ceram Soc, 2013, 96(9): 2950–2957.

    [37] [37] HUANG L, ZHENG C, GUO Q H, et al. Characterization and enhanced nonlinear optical limiting response in carbon nanodots dispersed in solid-state hybrid organically modified silica gel glasses[J]. Opt Mater, 2018, 76: 335–343.

    [38] [38] ZHENG C, HUANG L, GUO Q H, et al. Nonlinear optical responses of carbon quantum dots anchored on graphene oxide hybrid in solid-state transparent monolithic silica gel glasses[J]. Opt Laser Technol, 2018, 107: 281–290.

    [39] [39] XIE Z, DU Q Q, WU Y Z, et al. Full-band UV shielding and highly daylight luminescent silane-functionalized graphene quantum dot nanofluids and their arbitrary polymerized hybrid gel glasses[J]. J Mater Chem C, 2016, 4(41): 9879–9886.

    [40] [40] FENG M, ZHAN H. Facile preparation of transparent and dense CdS–silica gel glass nanocomposites for optical limiting applications[J]. Nanoscale, 2014, 6(8): 3972–3977.

    [41] [41] ZHENG C, FENG M, DU Y H, et al. Synthesis and third-order nonlinear optical properties of a multiwalled carbon nanotube–organically modified silicate nanohybrid gel glass[J]. Carbon, 2009, 47(12): 2889–2897.

    [42] [42] ZHENG C, CHEN W Z, YE X Y, et al. Fabricating silver nanoplate/hybrid silica gel glasses and investigating their nonlinear optical absorption behavior[J]. Opt Mater, 2014, 36(5): 982–987.

    [43] [43] ZHENG C, LI W, CHEN W Z, et al. Nonlinear optical behavior of silver nanopentagons[J]. Mater Lett, 2014, 116: 1–4.

    [44] [44] ZHENG C, CHEN W K, DAI P Q. Efficient tailored nonlinear optical responses by nanoassemblies: Focus on spindle β-FeOOH nanorods[J]. Ceram Int, 2018, 44(14): 17180–17188.

    [45] [45] YU D J, SUN X M, CHEN X, et al. In situ hydrosilane reduction and preparation of gold nanoparticle–gel glass composites with nonlinear optical properties[J]. J Mater Chem C, 2018, 6(21): 5624–5629.

    [46] [46] SUN X M, HU X J, SUN J B, et al. Strong optical limiting properties of Ormosil gel glasses doped with silver nano-particles[J]. New J Chem, 2019, 43(16): 6274–6278.

    [47] [47] XIE Z, WU Y Z, SUN X M, et al. Ultra-broadband nonlinear optical response of two-dimensional h-BN nanosheets and their hybrid gel glasses[J]. Nanoscale, 2018, 10(9): 4276–4283.

    [48] [48] LIU S X, JI J P, ZENG H B, et al. Functionalization of hexagonal boron nitride nanosheets and their copolymerized solid glasses[J]. 2D Mater, 2018, 5(3): 035036.

    [49] [49] XING F Y, WANG J J, WANG Z, et al. Covalently silane-functionalized antimonene nanosheets and their copolymerized gel glasses for broadband vis-NIR optical limiting[J]. ACS Appl Mater Interfaces, 2021, 13(1): 897–903.

    [50] [50] LV X G, LI N, LI Y F, et al. Siloxene nanosheets and their hybrid gel glasses for broad-band optical limiting[J]. Molecules, 2023, 28(5): 2143.

    [51] [51] MA X T, LIU J L, ZHENG C, et al. Passivation of black phosphorus nanoflakes embedded in a silica glass matrix affords ambient saturable absorption stability enhancement[J]. Appl Opt, 2022, 61(15): 4638–4647.

    [52] [52] ZHENG C, CHEN W Z, CAI S G, et al. Influence of doping level on the structure, texture, and nonlinear optical properties of graphene oxide/Au hybrids doped ORMOSIL gel glasses[J]. Ceram Int, 2014, 40(10): 16245–16251.

    [53] [53] ZHENG C, WANG T T, XIAO X Q, et al. Robust and efficient optical limiters based on molybdenum disulfide nanosheets embedded in solid-state heavy-metal oxide glasses[J]. Opt Mater Express, 2020, 10(6): 1463.

    [54] [54] ZHENG C, HUANG L, LI W, et al. Encapsulation of cobalt porphyrins in organically modified silica gel glasses and their nonlinear optical properties[J]. Appl Phys B, 2016, 123(1): 27.

    [55] [55] HAN B, LIANG B, ZHANG E H, et al. Phthalocyanine covalent organic frameworks: Dimensionality effect on third-order nonlinear optical properties[J]. Adv Funct Mater, 2024: 2404289.

    [56] [56] LIANG B, ZHAO J, WANG J J, et al. Nonlinear optical properties of porphyrin-based covalent organic frameworks determined by steric-orientation of conjugation[J]. J Mater Chem C, 2023, 11(9): 3354–3359.

    [57] [57] WANG H L, QI D D, XIE Z, et al. A sandwich-type phthalocyaninato metal sextuple-decker complex: Synthesis and NLO properties[J]. Chem Commun, 2013, 49(9): 889–891.

    [58] [58] LIU C, YANG W, WANG J J, et al. A sextuple-decker heteroleptic phthalocyanine heterometallic samarium-cadmium complex with crystal structure and nonlinear optical properties in solution and gel glass[J]. Dalton Trans, 2021, 50(39): 13661–13665.

    [59] [59] ZHAN H B, CHEN W Z, WANG M Q. Study on the optical limiting mechanism of metallo-phthalocyanine/silica gel glass composites[J]. Mater Lett, 2005, 59(11): 1395–1399.

    [60] [60] ZHAN H B, CHEN W Z, WANG M Q, et al. Optical limiting properties of peripherally modified palladium phthalocyanines doped silica gel glass[J]. Chem Phys Lett, 2004, 389(1–3): 119–123.

    [61] [61] WANG L S, WANG Y, LV C L, et al. Polyoxometalates with tunable third-order nonlinear optical and superbroadband optical limiting properties[J]. Inorg Chem Front, 2022, 9(17): 4413–4424.

    [62] [62] LU G F, CHEN J, CHAI Y, et al. GaN optical devices integrated with sol-gel films for pH detection[J]. IEEE Trans Electron Devices, 2024, 71(2): 1226–1230.

    [63] [63] BHANDARKAR S. Sol–gel processing for optical communication technology[J]. J Am Ceram Soc, 2004, 87(7): 1180–1199.

    [64] [64] LI X F, WU Y M, LIN H, et al. Photochromic 3D optical storage: Laser-induced regulation of localized optical basicity of glass[J]. Laser Photonics Rev, 2024, 18(1): 2300744.

    Tools

    Get Citation

    Copy Citation Text

    HUANG Zhaodi, TANG Xiaoyan, YANG Qingfang, WANG Jingjing, XIE Zheng. Research Progress on Optical Functional Hybrid Gel Glass Devices[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2722

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 8, 2024

    Accepted: --

    Published Online: Dec. 4, 2024

    The Author Email: Zheng XIE (chm_xiez@ujn.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240121

    Topics