Journal of the Chinese Ceramic Society, Volume. 52, Issue 8, 2722(2024)
Research Progress on Optical Functional Hybrid Gel Glass Devices
[1] [1] WEI Y L, EBENDORFF-HEIDEPRIEM H, ZHAO J T. Recent advances in hybrid optical materials: Integrating nanoparticles within a glass matrix[J]. Adv Opt Mater, 2019, 7(21): 1900702.
[2] [2] ALI M A, WINTERS W M W, MOHAMED M A, et al. Fabrication of super-sized metal inorganic-organic hybrid glass with supramolecular network via crystallization-suppressing approach[J]. Angew Chem Int Ed Engl, 2023, 62(14): e202218094.
[3] [3] LIN R J, CHAI M, ZHOU Y H, et al. Metal-organic framework glass composites[J]. Chem Soc Rev, 2023, 52(13): 4149–4172.
[4] [4] HARDER C, ALEXAKIS A E, BULUT Y, et al. Optical properties of slot-die coated hybrid colloid/cellulose-nanofibril thin films[J]. Adv Opt Mater, 2023, 11(13): 2203058.
[5] [5] ZHAO X J, LUO X J, BAZUIN C G, et al. In situ growth of AuNPs on glass nanofibers for SERS sensors[J]. ACS Appl Mater Interfaces, 2020, 12(49): 55349–55361.
[6] [6] DONG X Z, WANG Y F, GUAN R F, et al. Silane-functionalized carbon dots and their polymerized hybrids: From optoelectronics to biotherapy[J]. Small, 2021, 17(50): e2105273.
[7] [7] PAN Q W, YANG D D, DONG G P, et al. Nanocrystal-in-glass composite (NGC): A powerful pathway from nanocrystals to advanced optical materials[J]. Prog Mater Sci, 2022, 130: 100998.
[8] [8] ZHANG H, LI L C, WANG L Y, et al. Dinuclear indium phthalocyanine doped in PMMA glass used as nonlinear optical limiter[J]. Mol Syst Des Eng, 2023, 8(2): 240–250.
[9] [9] FISCHER S, SALCHER A, KORNOWSKI A, et al. Completely miscible nanocomposites[J]. Angew Chem Int Ed, 2011, 50(34): 7811–7814.
[10] [10] TOMCZAK N, JA?CZEWSKI D, HAN M Y, et al. Designer polymer–quantum dot architectures[J]. Prog Polym Sci, 2009, 34(5): 393–430.
[11] [11] JA?CZEWSKI D, TOMCZAK N, HAN M Y, et al. Synthesis of functionalized amphiphilic polymers for coating quantum dots[J]. Nat Protoc, 2011, 6(10): 1546–1553.
[12] [12] ZHANG H, CUI Z, WANG Y, et al. From water-soluble CdTe nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable surfactants[J]. Adv Mater, 2003, 15(10): 777–780.
[13] [13] ZHANG H, HAN J S, YANG B. Structural fabrication and functional modulation of nanoparticle–polymer composites[J]. Adv Funct Mater, 2010, 20(10): 1533–1550.
[14] [14] KIM Y H, LEE I, LEE H, et al. Sol–gel synthesized siloxane hybrid materials for display and optoelectronic applications[J]. J Sol Gel Sci Technol, 2023, 107(1): 32–45.
[15] [15] JIN J, KO J H, YANG S, et al. Rollable transparent glass-fabric reinforced composite substrate for flexible devices[J]. Adv Mater, 2010, 22(40): 4510–4515.
[16] [16] REN J, SUN X, WANG Y, et al. Controllable photoluminescent and nonlinear optical properties of polymerizable carbon dots and their arbitrary copolymerized gel glasses[J]. Adv Opt Mater, 2018, 6(12).
[17] [17] WANG Y F, YIN Z M, XIE Z, et al. Polysiloxane functionalized carbon dots and their cross-linked flexible silicone rubbers for color conversion and encapsulation of white LEDs[J]. ACS Appl Mater Interfaces, 2016, 8(15): 9961–9968.
[18] [18] XIE Z, HE H F, DENG Y H, et al. Three-arm star compounds composed of 1, 3, 5-tri(azobenzeneethynyl)benzene cores and flexible PEO arms: Synthesis, optical functions, hybrid Ormosil gel glasses[J]. J Mater Chem C, 2013, 1(9): 1791–1797.
[19] [19] CHAO T Y, WANG J J, DONG X Z, et al. Defects and structural limitation-induced carbon dots-silica hybrid materials with ultralong room temperature phosphorescence[J]. J Phys Chem Lett, 2022, 13(41): 9558–9563.
[20] [20] WANG F, XIE Z, ZHANG H, et al. Highly luminescent organosilane-functionalized carbon dots[J]. Adv Funct Mater, 2011, 21(6): 1027–1031.
[21] [21] XIE Z, WANG F, LIU C Y. Organic-inorganic hybrid functional carbon dot gel glasses[J]. Adv Mater, 2012, 24(13): 1716–1721.
[22] [22] LINGANNA K, RYU Y, NAEEM K, et al. Fabrication and characterization of highly Dy3+- and Tb3+-doped germano-borate glasses for magneto-optic device applications at 1.55 μm[J]. J Non Cryst Solids, 2022, 585: 121520.
[23] [23] KILIC G, ILIK E, ISSA S A M, et al. Synthesis and structural, optical, physical properties of Gadolinium (III) oxide reinforced TeO2-B2O3- (20–x)Li2O-xGd2O3 glass system[J]. J Alloys Comp, 2021, 877: 160302.
[24] [24] MARCONDES L M, RODRIGUES L, RAMOS DA CUNHA C, et al. Rare-earth ion doped niobium germanate glasses and glass-ceramics for optical device applications[J]. J Lumin, 2019, 213: 224–234.
[25] [25] YANG H F, LI F H, SHAN C S, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement[J]. J Mater Chem, 2009, 19(26): 4632–4638.
[26] [26] LI X K, SUN K, WU J J, et al. Thermal-triggered phase separation and ion exchange enables photoluminescence tuning of stable mixed-halide perovskite nanocrystals for dynamic display[J]. Laser Photonics Rev, 2024, 18(5): 2301244.
[27] [27] SUN K, TAN D Z, FANG X Y, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 2022,375(6578): 307–310.
[28] [28] SUN K, ZHANG B, GAO K, et al. Localized temperature engineering enables writing of heterostructures in glass for polarized photoluminescence of perovskites[J]. ACS Nano, 2024, 18(8): 6550–6557.
[29] [29] KIM I S, CHO H, SOHN K S, et al. A study on the severe crazing phenomenon of the PMMA canopy under prolonged exposure to tropical climates[J]. Eng Fail Anal, 2021, 129: 105719.
[30] [30] ZHANG Y J, GUO X T, WANG C H, et al. Self-polymerization and co-polymerization kinetics of lead methacrylate[J]. Rare Met, 2021, 40(3): 736–742.
[31] [31] NAZNIN H, MALLIK A K, HOSSAIN K S, et al. Enhancement of thermal and mechanical properties of PMMA composites by incorporating mesoporous micro-silica and GO[J]. Results Mater, 2021, 11: 100203.
[32] [32] MA G S, XIA L, YANG H, et al. Multifunctional lithium Aluminosilicate/CNT composite for gas filtration and electromagnetic wave absorption[J]. Chem Eng J, 2021, 418: 129429.
[33] [33] LIN H, JIA H J, ZHOU L N, et al. Magneto-optical and fluorescence properties of Tb3+ doped glass-ceramics containing AlPO4[J]. J Non Cryst Solids, 2022, 579: 121377.
[34] [34] YOUSSIF E, DOWEIDAR H, RAMADAN R. Bioactivity of microporous borate glass-ceramics prepared from solution and derived glasses[J]. J Non Cryst Solids, 2021, 557: 120649.
[35] [35] XU Y D, ZHOU W C, ZHANG L T, et al. Spinnability and crystallizability of silica glass fiber by the sol–gel method[J]. J Mater Process Technol, 2000, 101(1–3): 44–46.
[36] [36] KANEZASHI M, SASAKI T, TAWARAYAMA H, et al. Hydrogen permeation properties and hydrothermal stability of sol–gel-derived amorphous silica membranes fabricated at high temperatures[J]. J Am Ceram Soc, 2013, 96(9): 2950–2957.
[37] [37] HUANG L, ZHENG C, GUO Q H, et al. Characterization and enhanced nonlinear optical limiting response in carbon nanodots dispersed in solid-state hybrid organically modified silica gel glasses[J]. Opt Mater, 2018, 76: 335–343.
[38] [38] ZHENG C, HUANG L, GUO Q H, et al. Nonlinear optical responses of carbon quantum dots anchored on graphene oxide hybrid in solid-state transparent monolithic silica gel glasses[J]. Opt Laser Technol, 2018, 107: 281–290.
[39] [39] XIE Z, DU Q Q, WU Y Z, et al. Full-band UV shielding and highly daylight luminescent silane-functionalized graphene quantum dot nanofluids and their arbitrary polymerized hybrid gel glasses[J]. J Mater Chem C, 2016, 4(41): 9879–9886.
[40] [40] FENG M, ZHAN H. Facile preparation of transparent and dense CdS–silica gel glass nanocomposites for optical limiting applications[J]. Nanoscale, 2014, 6(8): 3972–3977.
[41] [41] ZHENG C, FENG M, DU Y H, et al. Synthesis and third-order nonlinear optical properties of a multiwalled carbon nanotube–organically modified silicate nanohybrid gel glass[J]. Carbon, 2009, 47(12): 2889–2897.
[42] [42] ZHENG C, CHEN W Z, YE X Y, et al. Fabricating silver nanoplate/hybrid silica gel glasses and investigating their nonlinear optical absorption behavior[J]. Opt Mater, 2014, 36(5): 982–987.
[43] [43] ZHENG C, LI W, CHEN W Z, et al. Nonlinear optical behavior of silver nanopentagons[J]. Mater Lett, 2014, 116: 1–4.
[44] [44] ZHENG C, CHEN W K, DAI P Q. Efficient tailored nonlinear optical responses by nanoassemblies: Focus on spindle β-FeOOH nanorods[J]. Ceram Int, 2018, 44(14): 17180–17188.
[45] [45] YU D J, SUN X M, CHEN X, et al. In situ hydrosilane reduction and preparation of gold nanoparticle–gel glass composites with nonlinear optical properties[J]. J Mater Chem C, 2018, 6(21): 5624–5629.
[46] [46] SUN X M, HU X J, SUN J B, et al. Strong optical limiting properties of Ormosil gel glasses doped with silver nano-particles[J]. New J Chem, 2019, 43(16): 6274–6278.
[47] [47] XIE Z, WU Y Z, SUN X M, et al. Ultra-broadband nonlinear optical response of two-dimensional h-BN nanosheets and their hybrid gel glasses[J]. Nanoscale, 2018, 10(9): 4276–4283.
[48] [48] LIU S X, JI J P, ZENG H B, et al. Functionalization of hexagonal boron nitride nanosheets and their copolymerized solid glasses[J]. 2D Mater, 2018, 5(3): 035036.
[49] [49] XING F Y, WANG J J, WANG Z, et al. Covalently silane-functionalized antimonene nanosheets and their copolymerized gel glasses for broadband vis-NIR optical limiting[J]. ACS Appl Mater Interfaces, 2021, 13(1): 897–903.
[50] [50] LV X G, LI N, LI Y F, et al. Siloxene nanosheets and their hybrid gel glasses for broad-band optical limiting[J]. Molecules, 2023, 28(5): 2143.
[51] [51] MA X T, LIU J L, ZHENG C, et al. Passivation of black phosphorus nanoflakes embedded in a silica glass matrix affords ambient saturable absorption stability enhancement[J]. Appl Opt, 2022, 61(15): 4638–4647.
[52] [52] ZHENG C, CHEN W Z, CAI S G, et al. Influence of doping level on the structure, texture, and nonlinear optical properties of graphene oxide/Au hybrids doped ORMOSIL gel glasses[J]. Ceram Int, 2014, 40(10): 16245–16251.
[53] [53] ZHENG C, WANG T T, XIAO X Q, et al. Robust and efficient optical limiters based on molybdenum disulfide nanosheets embedded in solid-state heavy-metal oxide glasses[J]. Opt Mater Express, 2020, 10(6): 1463.
[54] [54] ZHENG C, HUANG L, LI W, et al. Encapsulation of cobalt porphyrins in organically modified silica gel glasses and their nonlinear optical properties[J]. Appl Phys B, 2016, 123(1): 27.
[55] [55] HAN B, LIANG B, ZHANG E H, et al. Phthalocyanine covalent organic frameworks: Dimensionality effect on third-order nonlinear optical properties[J]. Adv Funct Mater, 2024: 2404289.
[56] [56] LIANG B, ZHAO J, WANG J J, et al. Nonlinear optical properties of porphyrin-based covalent organic frameworks determined by steric-orientation of conjugation[J]. J Mater Chem C, 2023, 11(9): 3354–3359.
[57] [57] WANG H L, QI D D, XIE Z, et al. A sandwich-type phthalocyaninato metal sextuple-decker complex: Synthesis and NLO properties[J]. Chem Commun, 2013, 49(9): 889–891.
[58] [58] LIU C, YANG W, WANG J J, et al. A sextuple-decker heteroleptic phthalocyanine heterometallic samarium-cadmium complex with crystal structure and nonlinear optical properties in solution and gel glass[J]. Dalton Trans, 2021, 50(39): 13661–13665.
[59] [59] ZHAN H B, CHEN W Z, WANG M Q. Study on the optical limiting mechanism of metallo-phthalocyanine/silica gel glass composites[J]. Mater Lett, 2005, 59(11): 1395–1399.
[60] [60] ZHAN H B, CHEN W Z, WANG M Q, et al. Optical limiting properties of peripherally modified palladium phthalocyanines doped silica gel glass[J]. Chem Phys Lett, 2004, 389(1–3): 119–123.
[61] [61] WANG L S, WANG Y, LV C L, et al. Polyoxometalates with tunable third-order nonlinear optical and superbroadband optical limiting properties[J]. Inorg Chem Front, 2022, 9(17): 4413–4424.
[62] [62] LU G F, CHEN J, CHAI Y, et al. GaN optical devices integrated with sol-gel films for pH detection[J]. IEEE Trans Electron Devices, 2024, 71(2): 1226–1230.
[63] [63] BHANDARKAR S. Sol–gel processing for optical communication technology[J]. J Am Ceram Soc, 2004, 87(7): 1180–1199.
[64] [64] LI X F, WU Y M, LIN H, et al. Photochromic 3D optical storage: Laser-induced regulation of localized optical basicity of glass[J]. Laser Photonics Rev, 2024, 18(1): 2300744.
Get Citation
Copy Citation Text
HUANG Zhaodi, TANG Xiaoyan, YANG Qingfang, WANG Jingjing, XIE Zheng. Research Progress on Optical Functional Hybrid Gel Glass Devices[J]. Journal of the Chinese Ceramic Society, 2024, 52(8): 2722
Category:
Received: Feb. 8, 2024
Accepted: --
Published Online: Dec. 4, 2024
The Author Email: Zheng XIE (chm_xiez@ujn.edu.cn)