Acta Photonica Sinica, Volume. 47, Issue 12, 1223002(2018)

Interface Engineering of Graphene/silicon Solar Cells by Introducing an Ultrathin Magnesium Oxide Interlayer

ZHAO Jian-jiang1、* and XU Ming-sheng2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(21)

    [1] [1] YE Neng, YAN Jie-ling, XIE Shuang, et al. Silver nanowire-graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells[J]. Nanotechnology, 2017, 28(30): 305402.

    [2] [2] BARTOLOMEO D A. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction[J]. Physics Reports, 2016, 606(1): 1-58.

    [3] [3] LI Xin-ming, ZHU Hong-wei, WANG Kun-lin, et al. Graphene-on-silicon schottky junction solar Cells[J]. Advanced Materials, 2010, 22(25): 2743-2750.

    [4] [4] SONG Yi, LI Xin-ming, Mackin C, et al. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells[J]. Nano Letters, 2015, 15(3): 2104-2110.

    [5] [5] MIAO Xiao-chang, TONGAY S, PETTERSON M K, et al. High efficiency graphene solar cells by chemical doping[J]. Nano Letters, 2012, 12(6): 2745-2750.

    [6] [6] ZHANG Xiao-zhen, XIE Chao, JIE Jian-sheng, et al. High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification andgraphene doping[J]. Journal of Materials Chemistry A, 2013, 1(22): 6593-6601.

    [7] [7] XIE Chao, ZHANG Xiao-zhen, WU Yi-ming, et al. Surface passivation and band engineering: a way toward high efficiency graphene-planar Si solar cells[J]. Journal of Materials Chemistry A, 2013, 1(30): 8567-8574.

    [8] [8] XU Di-kai, YU Xue-gong, GAO Da-ce, et al. Room-temperature processed, air-stable and highly efficient graphene/silicon solar cells with an organic interlayer[J]. Journal of Materials Chemistry A, 2016, 4(29): 11284-11291.

    [9] [9] XIE Chao, ZHANG Xiu-juan, RUAN Kai-qun, et al. High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells[J]. Journal of Materials Chemistry A, 2013, 1(48): 15348-15354.

    [10] [10] LIAO Tong-qing, WEI Xiao-long, WU Sheng, et al. Reduction of reflected light from silicon solar cells through spherical optical micro/nano-structure[J]. Infrared and Laser Engineering, 2016, 45(1): 0116001.

    [11] [11] MU Xin-hui, YU Xue-gong, XU Di-kai, et al. High efficiency organic/silicon hybrid solar cells with doping-free selective emitter structure induced by a WO3 thin interlayer[J]. Nano Energy, 2015, 16: 54-61.

    [12] [12] CARR B A, FRIEDLAND E, MALHERBE J B. Effect of annealing on the Schottky barrier height of Al/n-Si Schottky diodes after Ar+ ion bombardment[J]. Journal of Applied Physics, 1988, 64(9): 4775-4777.

    [13] [13] ZHANG Yun-fang, CUI Wei, ZHU Ya-wen, et al. High efficiency hybrid PEDOT: PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact[J]. Energy & Environmental Science, 2015, 8(1): 297-302.

    [14] [14] ZHANG Yun-fang, LIU Rui-yuan, LEE Shuit-tong, et al. The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/Si organic-inorganic hybrid solar cells[J]. Applied Physics Letters, 2014, 104(8): 083514.

    [15] [15] XU Di-kai, YU Xue-gong, ZUO Li-jian, et al. Interface engineering and efficiency improvement of monolayer graphene-silicon solar cells by inserting an ultra-thin LiF interlayer[J]. RSC Advances, 2015, 5(58): 46480-46484.

    [16] [16] CHOI H W, KIM S Y, KIM W K, et al. Enhancement of electron injection in inverted top-emitting organic light-emitting diodes using an insulating magnesium oxide buffer layer[J]. Applied Physics Letters, 2005, 87(8): 082102.

    [17] [17] KIM Y E, PARK H, KIM J J. Enhanced quantum efficiency in polymer electroluminescence devices by inserting a tunneling barrier formed by Langmuir-Blodgett films[J]. Applied Physics Letters, 1996, 69(5): 599.

    [18] [18] BRUNA M, OTT A K, IJAS M, et al. Doping dependence of the Raman spectrum of defected graphene[J]. ACS Nano, 2014, 8(7): 7432-41.

    [19] [19] YANG Li-fei, YU Xue-gong, XU Ming-sheng, et al. Interface engineering for efficient and stable chemical-doping-free graphene-on-silicon solar cells by introducing a graphene oxide interlayer[J]. Journal of Materials Chemistry A, 2014, 2(40): 16877-16883.

    [20] [20] REEVES G K, HARRISON H B. Obtaining the specific contact resistance from transmission line model measurements[J]. IEEE Electron Device Letters, 1982, 3(5): 111-113.

    [21] [21] CUI Tong-xiang, LV Rui-tao, HUANG Zheng-hong, et al. Enhanced efficiency of graphene/Si heterojunction solar cells by molecular doping[J]. Journal of Materials Chemistry A, 2013, 1(18): 5736-5740.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Jian-jiang, XU Ming-sheng. Interface Engineering of Graphene/silicon Solar Cells by Introducing an Ultrathin Magnesium Oxide Interlayer[J]. Acta Photonica Sinica, 2018, 47(12): 1223002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 9, 2018

    Accepted: --

    Published Online: Jan. 10, 2019

    The Author Email: Jian-jiang ZHAO (zjjiang@zju.edu.cn)

    DOI:10.3788/gzxb20184712.1223002

    Topics