Laser & Optoelectronics Progress, Volume. 60, Issue 13, 1316012(2023)

Research Progress of Micro-Nano Thermoelectric Fibers

Min Sun1、†,*, Xu Lu1、†, Gang Yuan1, Jinwei Cao2, Rongtai Lu2, Guowu Tang3, Dongdan Chen2, and Qi Qian2、**
Author Affiliations
  • 1Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710043, Shaanxi, China
  • 2State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, Guangdong, China
  • 3School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • show less
    References(100)

    [1] Eibl O, Nielsch K, Peranio N et al[M]. Thermoelectric Bi2Te3 nanomaterials(2015).

    [2] Lin Y, Hu Y F. Application of Bi2Te3 nanomaterial-modified fabric sensors in dance training[J]. International Journal of Nanotechnology, 17, 456(2020).

    [3] Akram R, Khan J S, Qamar Z et al. Ultra-low thermal conductivity and thermoelectric properties of polymer-mixed Bi2Te3 nanofibers by electrospinning[J]. Journal of Materials Science, 57, 3309-3321(2022).

    [4] Xu W H, Shi Y, Hadim H. The fabrication of thermoelectric La0.95Sr0.05CoO3 nanofibers and Seebeck coefficient measurement[J]. Nanotechnology, 21, 395303(2010).

    [5] Sekak K A, Lowe A. Structural and thermal characterization of calcium cobaltite electrospun nanostructured fibers[J]. Journal of the American Ceramic Society, 94, 611-619(2011).

    [6] Klyndyuk A I, Chizhova E A, Latypov R S et al. Effect of the addition of copper particles on the thermoelectric properties of the Ca3Co4O9+δ ceramics produced by two-step sintering[J]. Russian Journal of Inorganic Chemistry, 67, 237-244(2022).

    [7] Yang W F, Xu H, Li Y Y et al. Fabrications of polyaniline films by pulse electrodeposition in acidic solutions with different anions and their thermoelectric performances[J]. Journal of Electronic Materials, 46, 4815-4824(2017).

    [8] Li J Y, Dong C S, Hu J L et al. Self-standing and flexible thermoelectric nanofiber mat of an n-type conjugated polymer[J]. ACS Applied Electronic Materials, 3, 3641-3647(2021).

    [9] Pan Y C, Song Y F, Jiang Q L et al. Solvent treatment of wet-spinning PEDOT: PSS fiber towards wearable thermoelectric energy harvesting[J]. Synthetic Metals, 283, 116969(2022).

    [10] Borrell A, Rocha V G, Torrecillas R et al. Effect of carbon nanofibers content on thermal properties of ceramic nanocomposites[J]. Journal of Composite Materials, 46, 1229-1234(2012).

    [11] Gan Y X, Chen A D, Gan J B et al. Electrohydrodynamic casting bismuth telluride microparticle-loaded carbon nanofiber composite material with multiple sensing functions[J]. Journal of Micro and Nano-Manufacturing, 6, 011005(2018).

    [12] Jia Y H, Jiang Q L, Sun H D et al. Wearable thermoelectric materials and devices for self-powered electronic systems[J]. Advanced Materials, 33, 2102990(2021).

    [13] Zhang T, Li K W, Li C C et al. Mechanically durable and flexible thermoelectric films from PEDOT: PSS/PVA/Bi0.5Sb1.5Te3 nanocomposites[J]. Advanced Electronic Materials, 3, 1600554(2017).

    [14] Li C C, Lan X Q, Liu P P et al. Core/hybrid-shell structures boost thermoelectric performance of flexible inorganic/organic nanowire films[J]. Nano Research, 16, 5702-5708(2023).

    [15] Wang Y Y, Bai Z Z, Guo Y et al. Recent advances in 2D material/conducting polymer composites for thermoelectric energy conversion[J]. Macromolecular Materials and Engineering, 307, 2200107(2022).

    [16] Liu Y F, Liu P P, Jiang Q L et al. Organic/inorganic hybrid for flexible thermoelectric fibers[J]. Chemical Engineering Journal, 405, 126510(2021).

    [17] Jiang X Q, Ban C C, Li L et al. Electrospinning of BCNNTs/PVA/PEDOT composite nanofibers films for research thermoelectric performance[J]. Journal of Applied Polymer Science, 139, 52049(2022).

    [18] Gan Y X. Recent development of thermoelectric nanofibers and their composites[J]. Journal of Materiomics, 9, 99-130(2023).

    [19] Wang H, Yi S I, Yu C. Engineering electrical transport at the interface of conjugated carbon structures to improve thermoelectric properties of their composites[J]. Polymer, 97, 487-495(2016).

    [20] Lim K H, Wong K W, Cadavid D et al. Mechanistic study of energy dependent scattering and hole-phonon interaction at hybrid polymer composite interfaces for optimized thermoelectric performance[J]. Composites Part B: Engineering, 164, 54-60(2019).

    [21] Herrera-Ramírez L C, Cano M, de Villoria R G. Low thermal and high electrical conductivity in hollow glass microspheres covered with carbon nanofiber-polymer composites[J]. Composites Science and Technology, 151, 211-218(2017).

    [22] Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor[J]. Physical Review B, 47, 16631-16634(1993).

    [23] Zhou T L, Wang J W, Huang M et al. Breathable nanowood biofilms as guiding layer for green on-skin electronics[J]. Small, 15, 1901079(2019).

    [24] He X Y, Shi J, Hao Y N et al. PEDOT: PSS/CNT composites based ultra-stretchable thermoelectrics and their application as strain sensors[J]. Composites Communications, 27, 100822(2021).

    [25] Noh J S. Conductive elastomers for stretchable electronics, sensors and energy harvesters[J]. Polymers, 8, 123(2016).

    [26] Wang L, Qiu P H, Yang T et al. 3D Bacterial flagella as both synthetic biotemplates and ultrathin spacers for enhanced inter-particle coupling and solar energy harvesting[J]. Materials Horizons, 8, 2097-2105(2021).

    [27] Zhang X F, Shiu B C, Li T T et al. Photo-thermoelectric nanofiber film based on the synergy of conjugated polymer and light traps for the solar-energy harvesting of textile solar panel[J]. Solar Energy Materials and Solar Cells, 232, 111353(2021).

    [28] Hwang B, Lund A, Tian Y et al. Machine-washable conductive silk yarns with a composite coating of Ag nanowires and PEDOT: PSS[J]. ACS Applied Materials & Interfaces, 12, 27537-27544(2020).

    [29] Xin J W, Basit A, Li S H et al. Inorganic thermoelectric fibers: a review of materials, fabrication methods, and applications[J]. Sensors, 21, 3437(2021).

    [30] Shen Y N, Han X, Zhang P Y et al. Review on fiber-based thermoelectrics: materials, devices, and textiles[J]. Advanced Fiber Materials, 1-36(2023).

    [31] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Applied Physics Letters, 4, 89-90(1964).

    [32] Li D Y, Wu Y Y, Kim P et al. Thermal conductivity of individual silicon nanowires[J]. Applied Physics Letters, 83, 2934-2936(2003).

    [33] Lu W, Xiang J, Timko B P et al. One-dimensional hole gas in germanium/silicon nanowire heterostructures[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 10046-10051(2005).

    [34] Kim J R, So H M, Park J W et al. Electrical transport properties of individual gallium nitride nanowires synthesized by chemical-vapor-deposition[J]. Applied Physics Letters, 80, 3548-3550(2002).

    [35] Xiang B, Wang P W, Zhang X Z et al. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition[J]. Nano Letters, 7, 323-328(2007).

    [36] Pradhan S K, Reucroft P J, Yang F Q et al. Growth of TiO2 nanorods by metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 256, 83-88(2003).

    [37] Chen R K, Lee J, Lee W et al. Thermoelectrics of nanowires[J]. Chemical Reviews, 119, 9260-9302(2019).

    [38] Dávila D, Tarancón A, Calaza C et al. Monolithically integrated thermoelectric energy harvester based on silicon nanowire arrays for powering micro/nanodevices[J]. Nano Energy, 1, 812-819(2012).

    [39] Calaza C, Salleras M, Dávila D et al. Bottom-up silicon nanowire arrays for thermoelectric harvesting[J]. Materials Today: Proceedings, 2, 675-679(2015).

    [40] Hochbaum A I, Chen R K, Delgado R D et al. Enhanced thermoelectric performance of rough silicon nanowires[J]. Nature, 451, 163-167(2008).

    [41] Nagayama H, Honda H, Kawahara H. A new process for silica coating[J]. Journal of the Electrochemical Society, 135, 2013-2016(1988).

    [42] Sultana J, Paul S, Saha R et al. Optical and electronic properties of chemical bath deposited p-CuO and n-ZnO nanowires on silicon substrates: p-CuO/n-ZnO nanowires solar cells with high open-circuit voltage and short-circuit current[J]. Thin Solid Films, 699, 137861(2020).

    [43] Sultana J, Paul S, Karmakar A et al. Chemical bath deposited (CBD) CuO thin films on n-silicon substrate for electronic and optical applications: impact of growth time[J]. Applied Surface Science, 418, 380-387(2017).

    [44] Su L S, Gan Y X, Zhang L H. Thermoelectricity of nanocomposites containing TiO2-CoO coaxial nanocables[J]. Scripta Materialia, 64, 745-748(2011).

    [45] Mbulanga C M, Goosen W E, Betz R et al. Effect of surface properties of ZnO rods on the formation of anatase-phase TiO2 tubes prepared by liquid deposition method[J]. Applied Physics A, 126, 180(2020).

    [46] Liang D X, Yang H R, Finefrock S W et al. Flexible nanocrystal-coated glass fibers for high-performance thermoelectric energy harvesting[J]. Nano Letters, 12, 2140-2145(2012).

    [47] Finefrock S W, Wang Y, Ferguson J B et al. Measurement of thermal conductivity of PbTe nanocrystal coated glass fibers by the 3ω method[J]. Nano Letters, 13, 5006-5012(2013).

    [48] Li L, Xu S C, Li G H. Enhancement of thermoelectric properties in Bi-Sb-Te alloy nanowires by pulsed electrodeposition[J]. Energy Technology, 3, 825-829(2015).

    [49] Haisma J. Mold-assisted nanolithography: a process for reliable pattern replication[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 14, 4124-4128(1996).

    [50] Waller G H, Stein A, Abiade J T. Nanofabrication of doped, complex oxides[J]. Journal of Vacuum Science & Technology B, 30, 011804(2012).

    [51] Zhang T, Wu S L, Xu J et al. High thermoelectric figure-of-merits from large-area porous silicon nanowire arrays[J]. Nano Energy, 13, 433-441(2015).

    [52] Formhals A. Process and apparatus for preparing artificial threads[P].

    [53] Formhals A. Method and apparatus for the production of fibers[P].

    [54] Castaño O, Eltohamy M, Kim H W. Electrospinning technology in tissue regeneration[M]. Navarro M, Planell J. Nanotechnology in regenerative medicine, 811, 127-140(2012).

    [55] Xiao F, Yoo B, Bozhilov K N et al. Electrodeposition of single-crystal cubes of lead telluride on polycrystalline gold substrate[J]. The Journal of Physical Chemistry C, 111, 11397-11402(2007).

    [56] Xiao F, Yoo B, Ryan M A et al. Electrodeposition of PbTe thin films from acidic nitrate baths[J]. Electrochimica Acta, 52, 1101-1107(2006).

    [57] Yang Y A, Taggart D K, Cheng M H et al. High-throughput measurement of the seebeck coefficient and the electrical conductivity of lithographically patterned polycrystalline PbTe nanowires[J]. The Journal of Physical Chemistry Letters, 1, 3004-3011(2010).

    [58] Xu L, Zhang L Y, Cheng B et al. Rationally designed hierarchical NiCo2O4-C@Ni(OH)2 core-shell nanofibers for high performance supercapacitors[J]. Carbon, 152, 652-660(2019).

    [59] Hayat K, Niaz F, Ali S et al. Thermoelectric performance and humidity sensing characteristics of La2CuO4 nanofibers[J]. Sensors and Actuators B: Chemical, 231, 102-109(2016).

    [60] Liu Y, Lin Y H, Zhang B P et al. High-temperature electrical transport behavior observed in the La1.96M0.04CuO4 (M: Mg, Ca, Sr) polycrystalline ceramics[J]. Journal of the American Ceramic Society, 91, 2055-2058(2008).

    [61] Shiota I, Kohri H, Kato M et al. Fine Bi2Te3 wires fabricated by glass sealed melt spinning[C](2006).

    [62] Dutta B. High density nanowire arrays in glassy matrix[P].

    [63] Yang Z M, Sun M, Qian Q. A selenium-tin compound semiconductor core/glass cladding composite thermoelectric fiber with high thermoelectric value and its preparation method[P].

    [64] Tang G W, Liu W W, Qian Q et al. Antimony selenide core fibers[J]. Journal of Alloys and Compounds, 694, 497-501(2017).

    [65] Sun M, Qian Q, Tang G W et al. Enhanced thermoelectric properties of polycrystalline Bi2Te3 core fibers with preferentially oriented nanosheets[J]. APL Materials, 6, 036103(2018).

    [66] Sun M, Tang G W, Wang H F et al. Enhanced thermoelectric properties of Bi2Te3-based micro-nano fibers via thermal drawing and interfacial engineering[J]. Advanced Materials, 34, 2202942(2022).

    [67] Sun M, Tang G W, Qian G Q et al. In4Se3 alloy core thermoelectric fibers[J]. Materials Letters, 217, 13-15(2018).

    [68] Sun M, Tang G W, Liu W W et al. Sn-Se alloy core fibers[J]. Journal of Alloys and Compounds, 725, 242-247(2017).

    [69] Zhang J, Zhang T, Zhang H et al. Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics[J]. Advanced Materials, 32, 2002702(2020).

    [70] Zhang T, Li K W, Zhang J et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers[J]. Nano Energy, 41, 35-42(2017).

    [71] Zhang T, Wang Z, Srinivasan B et al. Ultraflexible glassy semiconductor fibers for thermal sensing and positioning[J]. ACS Applied Materials & Interfaces, 11, 2441-2447(2019).

    [72] Kang S L, Fu Y Q, Gu H et al. Chalcogenide glass for thermoelectric application[J]. Journal of Non-Crystalline Solids: X, 15, 100111(2022).

    [73] Fu Y Q, Kang S L, Gu H et al. Superflexible inorganic Ag2Te0.6S0.4 fiber with high thermoelectric performance[J]. Advanced Science, 10, 2207642(2023).

    [74] Liu Y J, Wang X D, Hou S H et al. Scalable-produced 3D elastic thermoelectric network for body heat harvesting[J]. Nature Communications, 14, 3058(2023).

    [75] Hicks L D. The effect of quantum-well superlattices on the thermoelectric figure of merit[D](1996).

    [76] Stępniowski W J, Paliwoda D, Abrahami S T et al. Nanorods grown by copper anodizing in sodium carbonate[J]. Journal of Electroanalytical Chemistry, 857, 113628(2020).

    [77] Jiang W, He J A, Xiao F et al. Preparation and antiscaling application of superhydrophobic anodized CuO nanowire surfaces[J]. Industrial & Engineering Chemistry Research, 54, 6874-6883(2015).

    [78] Funahashi R, Matsubara I, Ikuta H et al. An oxide single crystal with high thermoelectric performance in air[J]. Japanese Journal of Applied Physics, 39, L1127(2000).

    [79] Funahashi R, Matsubara I. Thermoelectric properties of Pb- and Ca-doped (Bi2Sr2O4)xCoO2 whiskers[J]. Applied Physics Letters, 79, 362-364(2001).

    [80] Sun T T, Zhou B Y, Zheng Q et al. Stretchable fabric generates electric power from woven thermoelectric fibers[J]. Nature Communications, 11, 572(2020).

    [81] Xu H F, Guo Y, Wu B et al. Highly integrable thermoelectric fiber[J]. ACS Applied Materials & Interfaces, 12, 33297-33304(2020).

    [82] Sun F, Jiang H, Wang H et al. Soft fiber electronics based on semiconducting polymer[J]. Chemical Reviews, 123, 4693-4763(2023).

    [83] Zheng Y Y, Zhang Q H, Jin W L et al. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics[J]. Journal of Materials Chemistry A, 8, 2984-2994(2020).

    [84] Yang X N, Zhang K. Direct wet-spun single-walled carbon nanotubes-based p-n segmented filaments toward wearable thermoelectric textiles[J]. ACS Applied Materials & Interfaces, 14, 44704-44712(2022).

    [85] Okada N, Sato K, Yokoo M et al. Thermoelectric properties of poly(3-hexylthiophene) nanofiber aerogels with a giant seebeck coefficient[J]. ACS Applied Polymer Materials, 3, 455-463(2021).

    [86] Jin S N, Sun T T, Fan Y C et al. Synthesis of freestanding PEDOT: PSS/PVA@Ag NPs nanofiber film for high-performance flexible thermoelectric generator[J]. Polymer, 167, 102-108(2019).

    [87] Weathers A, Matsushita S, Pettes M T et al. Iodine doping effects on the lattice thermal conductivity of oxidized polyacetylene nanofibers[J]. Journal of Applied Physics, 114, 194302(2013).

    [88] Gan Y X. Chapter 16 thermoelectrics based on metal oxide nanofibers. Metal oxide-based nanofibers and their applications, 395e424(2022).

    [89] Salazar M, Richey F, Elabd Y et al. The further improvement of the ionic thermoelectric generator[C](2013).

    [90] Sun T T, Wang L J, Jiang W. Pushing thermoelectric generators toward energy harvesting from the human body: challenges and strategies[J]. Materials Today, 57, 121-145(2022).

    [91] Saito W, Hayashi K, Huang Z C et al. Chemical-pressure-induced point defects enable low thermal conductivity for Mg2Sn and Mg2Si single crystals[J]. ACS Applied Energy Materials, 4, 5123-5131(2021).

    [92] Caballero-Calero O, Martín-González M. Thermoelectric nanowires: a brief prospective[J]. Scripta materialia, 111, 54-57(2016).

    [93] Han B, Luo Q H, Zhang P Y et al. Multifunctional single-crystal tellurium core multimaterial fiber via thermal drawing and laser recrystallization[J]. Journal of the American Ceramic Society, 105, 1640-1647(2022).

    [94] Xu H F, Hou C Y, Zhang Q H et al. Preparation and thermoelectric performance of tellurium nanowires-based thin-film materials[J]. Journal of Inorganic Materials, 35, 1034-1040(2020).

    [95] Yang X, Su X L, Yan Y G et al. Structures and thermoelectric properties of(GeTe)nBi2Te3[J]. Journal of Inorganic Materials, 36, 75-80(2021).

    [96] Qiu X X, Zhou X Y, Wang L J et al. Research progress on high-performance GeTe-based thermoelectric materials[J]. Journal of Synthetic Crystals, 49, 920-929(2020).

    [97] Ran Y T, Chen W D, Zhu H W. Preparation methods, thermoelectric properties, and potential applications of SnSe[J]. Chinese Journal of Lasers, 48, 0202015(2021).

    [98] Yang Q Y, Qiu P F, Shi X et al. Application of entropy engineering in thermoelectrics[J]. Journal of Inorganic Materials, 36, 347-354(2021).

    [99] Sheng Y, Ning J Y, Yang J. Application of machine learning in thermoelectric materials field[J]. Journal of the Chinese Ceramic Society, 51, 499-509(2023).

    [100] Guan Z Q, Dai W, Chen X P et al. Review on mechanism, characterization and performance of photothermoelectric effect[J]. Chinese Journal of Lasers, 50, 0113004(2023).

    Tools

    Get Citation

    Copy Citation Text

    Min Sun, Xu Lu, Gang Yuan, Jinwei Cao, Rongtai Lu, Guowu Tang, Dongdan Chen, Qi Qian. Research Progress of Micro-Nano Thermoelectric Fibers[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1316012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: May. 4, 2023

    Accepted: Jun. 12, 2023

    Published Online: Jul. 28, 2023

    The Author Email: Sun Min (jxsunmin@xjtu.edu.cn), Qian Qi (qianqi@scut.edu.cn)

    DOI:10.3788/LOP231225

    Topics