Spectroscopy and Spectral Analysis, Volume. 42, Issue 2, 517(2022)

Estimation of Soil Total Phosphorus Content in Coastal Areas Based on Hyperspectral Reflectance

Dan-ping WEI* and Guang-hui ZHENG*;
Author Affiliations
  • School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • show less
    Figures & Tables(9)
    Sampleing location
    Scatter plot of determination coefficients for partial least square regression calibration and prediction
    • Table 1. Statistics of soil TP and SOM contents

      View table
      View in Article

      Table 1. Statistics of soil TP and SOM contents

      土壤属性最大值/
      (g·kg-1)
      最小值/
      (g·kg-1)
      平均值/
      (g·kg-1)
      标准差/
      (g·kg-1)
      变异系数/
      %
      峰值K偏度S
      TP1.300.220.680.1928.021.012.19
      SOM52.561.399.188.7495.216.720.61
    • Table 2. Sample set partitioning based on KS

      View table
      View in Article

      Table 2. Sample set partitioning based on KS

      统计参数RSNVMSCFDSDRLCR
      建模集预测集建模集预测集建模集预测集建模集预测集建模集预测集建模集预测集建模集预测集
      最小值/(g·kg-1)0.220.460.220.510.220.510.220.470.220.440.220.500.220.46
      最大值/(g·kg-1)1.301.281.301.141.301.141.301.141.301.141.301.281.301.14
      平均值/(g·kg-1)0.670.760.680.720.680.720.680.720.690.670.670.740.680.71
      标准差/(g·kg-1)0.190.170.200.130.200.130.200.130.200.170.200.170.200.16
      变异系数/%29.1122.1930.2617.9930.2617.9930.1618.6328.8325.1529.3322.3629.4822.43
    • Table 3. Sample set partitioning based on SPXP

      View table
      View in Article

      Table 3. Sample set partitioning based on SPXP

      统计参数RSNVMSCFDSDRLCR
      建模集预测集建模集预测集建模集预测集建模集预测集建模集预测集建模集预测集建模集预测集
      最小值/(g·kg-1)0.220.490.220.450.220.450.220.500.220.470.220.490.220.46
      最大值/(g·kg-1)1.300.841.300.841.300.831.300.831.300.841.300.841.301.08
      平均值/(g·kg-1)0.690.680.680.700.680.700.680.720.690.660.690.680.680.69
      标准差/(g·kg-1)0.210.130.210.110.210.110.210.100.210.120.210.120.200.14
      变异系数/%30.0118.6130.5815.5730.5715.6730.8913.5029.9117.8230.0918.0729.8320.20
    • Table 4. Statistics of partial least square regression

      View table
      View in Article

      Table 4. Statistics of partial least square regression

      Partitioning
      methods
      RMSEcRc2RMSEpRp2RPDLVs
      Min0.090.290.070.011.023
      RSMax0.160.780.190.822.4013
      Mean0.110.670.130.511.499.14
      KS0.110.670.130.421.349
      SPXY0.110.690.110.261.199
    • Table 5. Statistics of support vector machine

      View table
      View in Article

      Table 5. Statistics of support vector machine

      Partitioning
      methods
      RMSEcRc2RMSEpRp2RPD
      Min0.060.730.100.000.86
      RSMax0.110.920.270.611.42
      Mean0.090.840.170.201.11
      KS0.110.800.160.411.09
      SPXY0.100.830.090.461.38
    • Table 6. PLSR calibration and prediction results of different spectral transformation methods and sample-set partitioning methods

      View table
      View in Article

      Table 6. PLSR calibration and prediction results of different spectral transformation methods and sample-set partitioning methods

      光谱变换RSKSSPXY
      Rc2Rp2LVsRc2Rp2LVsRc2Rp2LVs
      R0.670.509.130.670.4290.690.269
      SNV0.640.477.120.670.2870.630.236
      MSC0.660.487.940.680.2980.670.338
      FD0.630.464.380.700.3360.71-0.406
      SD0.680.445.010.680.4650.680.275
      RL0.670.488.530.660.5990.700.129
      CR0.610.484.930.590.3540.580.494
    • Table 7. SVM calibration and prediction results of different spectral transformation methods and sample-set partitioning methods

      View table
      View in Article

      Table 7. SVM calibration and prediction results of different spectral transformation methods and sample-set partitioning methods

      光谱变换RSKSSPXY
      Rc2Rp2Rc2Rp2Rc2Rp2
      R0.840.200.800.410.830.46
      SNV0.890.370.890.550.840.49
      MSC0.890.370.890.560.880.79
      FD0.910.460.920.820.930.76
      SD0.900.430.900.450.920.78
      RL0.850.210.800.310.840.49
      CR0.900.440.900.690.900.71
    Tools

    Get Citation

    Copy Citation Text

    Dan-ping WEI, Guang-hui ZHENG. Estimation of Soil Total Phosphorus Content in Coastal Areas Based on Hyperspectral Reflectance[J]. Spectroscopy and Spectral Analysis, 2022, 42(2): 517

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Dec. 29, 2020

    Accepted: Jan. 28, 2021

    Published Online: Apr. 2, 2022

    The Author Email: WEI Dan-ping (wdpnuist@163.com)

    DOI:10.3964/j.issn.1000-0593(2022)02-0517-07

    Topics