Acta Photonica Sinica, Volume. 47, Issue 4, 431002(2018)
Optimizational 1.8 μm Emission of Na5Lu9F32 Single Crystal Doped with Tm3+ Ions
[1] [1] STOEPPLER G, PARISI D, TONELLI M, et al. High-efficiency 1.9 μm Tm3+∶LiLuF4 thin-disk laser[J]. Optics Letters, 2012, 37(7): 1163-1165.
[2] [2] YU Hao-hai, PETROV V, GRIEBNER U, et al. Compact passively Q-switched diode-pumped Tm∶LiLuF4 laser with 1.26 μm output energy[J]. Optics Letters, 2012, 37(13): 2544-2546.
[3] [3] SHENG Qi-guo, XIA Hai-ping, TANG Qing-yang, et al. The optical properties of Tm3+ doped Na5Lu9F32 single crystal[J]. Optoelectronics Letters, 2017, 13(3): 201-205.
[4] [4] WANG Ya-zhou, LI Jian-feng, HAN-Lian, et al. Q-switched Tm3+-doped fiber laser with a micro-fiber based black phosphorus saturable absorber[J]. Laser Physics, 2016, 26(6): 065104.
[5] [5] CANBAZ F, YORULMAZ I, SENNAROGLU A. Kerr-lens mode-locked 2.3 μm Tm3+∶YLF laser as a source of femtosecond pulses in the mid-infrared[J]. Optics Letters, 2017, 42(19): 3964-3967.
[6] [6] MORRIS J, STEVENSON N K, BOOKEY H T. 1.9 μm waveguide laser fabricated by ultrafast laser inscription in Tm∶Lu2O3 ceramic[J]. Optics Express, 2017, 25(13): 14910-14917.
[7] [7] ZHOU Wei, FAN Xu-liang, XUE Hao, et al. Stable passively harmonic mode-locking dissipative pulses in 2 μm solid-state laser[J]. Optics Express, 2017, 25(3): 1815.
[8] [8] REN Xi-kui, DU Chen-lin, LI Chun-bo, et al. Silicon wafer: a direct output coupler in Tm∶YLF laser[J]. Chinese Physics Letters, 2016, 33(11): 114203.
[9] [9] PENG Ya-pei, YUAN Xin-qiang, ZHANG Jun-jie, et al. The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for~2 μm emission[J]. Scientific Reports, 2014, 4(17): 5256-5256.
[10] [10] JACKSON S. Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers[J]. Optics Communications, 2004, 230(1): 197-203.
[11] [11] YANG Shuo, XIA Hai-ping, JIANG Yong-zhang, et al. Tm3+ doped α-NaYF4 single crystal for 2 μm laser application[J]. Journal of Alloys and Compounds, 2015, 643: 1-6.
[12] [12] RUICHAN L, YANG Piao-ping, DAI Yun-lu, et al. Lutecium fluoride hollow mesoporous spheres withenhanced up-conversion luminescent bioimaging and light-triggered drug release by gold nanocrystals[J]. ACS Applied Materials & Interfaces, 2014, 6(17): 15550.
[13] [13] WALSH B M, BARNES N P, REICHLE D J, et al. Optical properties of Tm3+ ions in alkali germanate glass[J]. Journal of Non-Crystalline Solids, 2006, 352(50-51): 5344-5352.
[14] [14] WANG Cheng, XIA Hai-ping, FENG Zhi-gang, et al. Infrared luminescent properties of Na5Lu9F32 single crystals co-doped Er3+/Yb3+ grown by Bridgman method[J] Journal of Alloys and Compounds, 2016, 686: 816-822.
[15] [15] XIA Hai-ping, LIN Qiong-fei, ZHANG Jian-li, et al. 2 μm mid-infrared optical spectra of Tm3+ doped germanium gallate glasses[J]. Journal of Rare Earths, 2009, 27(5): 781-785.
[16] [16] YIN Bing, YANG Zhong-min, YANG Gang-feng, et al. The influence of cross-relaxation to the 1.8 μm emission of Tm3+ in tellurite Glass[J]. Rare Metal Materials and Engineering, 2008, 37: 85.
[17] [17] WU Jian-feng, JIANG Shi-bin, LUO Tao, et al. Efficient thulium-doped 2 μm germanate fiber laser[J]. IEEE Photonics Technology Letters. 2006, 18(2): 334-336.
[18] [18] MINISCALCO W J, QUIMBY R S. General procedure for the analysis of Er3+ cross sections[J]. Optics Letters, 1991, 16(4): 258.
[19] [19] WEI Yao-wei. Growth and spectroscopic properties of Tm3+ doped LiLa (MoO4)2 crystal[D]. Fuzhou: Fujian institute of research on the structure, Chinese Academy of Sciences, 2009.
Get Citation
Copy Citation Text
SHENG Qi-guo, XIA Hai-ping, TANG Qing-yang, HE Shi-nan, ZHANG Jian-li, CHEN Bao-jiu. Optimizational 1.8 μm Emission of Na5Lu9F32 Single Crystal Doped with Tm3+ Ions[J]. Acta Photonica Sinica, 2018, 47(4): 431002
Received: Oct. 8, 2017
Accepted: --
Published Online: Mar. 15, 2018
The Author Email: Qi-guo SHENG (aiqgsheng@163.com)