Journal of the Chinese Ceramic Society, Volume. 51, Issue 9, 2254(2023)

Research Progress on 3D/2D Multi-Dimensional Perovskite Materials and Photovoltaic Devices

LUO Long... LI Shangzhi, SHI Yingying, ZENG Miaomiao, ZHAO Jie, LIANG Hong, LI Lin and LI Xiong |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(104)

    [1] [1] XING G C, MATHEWS N, SUN S Y, et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344-347.

    [2] [2] DONG Q, FANG Y, SHAO Y, et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967-970.

    [3] [3] MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J]. Nature, 2021, 598(7881): 444-450.

    [4] [4] ZHAO Y, MA F, QU Z H, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells[J]. Science, 2022, 377(6605): 531-534.

    [5] [5] PARK J, KIM J, YUN H S, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides[J]. Nature, 2023, 616(7958): 724-730.

    [6] [6] WU G B, LIANG R, GE M Z, et al. Surface passivation using two dimensional perovskites towards efficient and stable perovskite solar cells[J]. Adv Mater, 2022, 34(8): 2105635.

    [7] [7] CHEN B, RUDD P N, YANG S, et al. Imperfections and their passivation in halide perovskite solar cells[J]. Chem Soc Rev, 2019, 48(14): 3842-3867.

    [8] [8] SHAO Y C, XIAO Z G, BI C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nat Commun, 2014, 5: 5784.

    [9] [9] LIN Y Z, CHEN B, ZHAO F W, et al. Matching charge extraction contact for wide-bandgap perovskite solar cells[J]. Adv Mater, 2017, 29(26): 1700607.

    [10] [10] XU J X, BUIN A, IP A H, et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes[J]. Nat Commun, 2015, 6(1): 1-8.

    [11] [11] ZHANG H, NAZEERUDDIN M, CHOY W. Perovskite photovoltaics: The significant role of ligands in film formation, passivation, and stability[J]. Adv Mater, 2019, 31(8): 1805702.

    [12] [12] WANG L, ZHOU H, HU J, et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells[J]. Science, 2019, 363(6424): 265-270.

    [13] [13] ABDI-JALEBI M, ANDAJI-GARMAROUDI Z, CACOVICH S, et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation[J]. Nature, 2018, 555(7697): 497-501.

    [14] [14] LI N, TAO S, CHEN Y, et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells[J]. Nat Energy, 2019, 4(5): 408-415.

    [15] [15] KIM J H, KIM S G, PARK N G. Effect of chemical bonding nature of post-treatment materials on photovoltaic performance of perovskite solar cells[J]. ACS Energy Lett, 2021, 6(10): 3435-3442.

    [16] [16] CHEN J B, YANG Y G, DONG H, et al. Highly efficient and stable perovskite solar cells enabled by low-dimensional perovskitoids[J]. Sci Adv, 2022, 8(4): 2722.

    [17] [17] KIM M, KIM G H, LEE T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells[J]. Joule, 2019, 3(9): 2179-2192.

    [18] [18] WANG S Y, TAN L G, ZHOU J J, et al. Over 24% efficient MA-free CsxFA1-xPbX3 perovskite solar cells[J]. Joule, 2022, 6(6): 1344-1356.

    [21] [21] LU H Z, LIU Y H, AHLAWAT P, et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells[J]. Science, 2020, 370(6512): eabb8985.

    [22] [22] JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells[J]. Nature, 2021, 592(7854): 381-385.

    [23] [23] ZHENG X, CHEN B, DAI J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nat Energy, 2017, 2: 17102.

    [24] [24] ZHENG X P, DENG Y H, CHEN B, et al. Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells[J]. Adv Mater, 2018, 30(52): 1803428.

    [25] [25] WANG Q, ZHENG X P, DENG Y H, et al. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films[J]. Joule, 2017, 1(2): 371-382.

    [26] [26] JACOBSSON T J, CORREA-BAENA J P, HALVANI ANARAKI E, et al. Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells[J]. J Am Chem Soc, 2016, 138(32): 10331-10343.

    [27] [27] ZHAO Y C, LI Q, ZHOU W K, et al. Double-side-passivated perovskite solar cells with ultra-low potential loss[J]. Sol RRL, 2019, 3(2): 1800296.

    [28] [28] ZHANG H K, YU W, GUO J X, et al. Excess PbI2 management via multimode supramolecular complex engineering enables high-performance perovskite solar cells[J]. Adv Energy Mater, 2022, 12(35): 2201663.

    [29] [29] CHEN Q, ZHOU H P, SONG T B, et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells[J]. Nano Lett, 2014, 14(7): 4158-4163.

    [30] [30] GAO Y, RAZA H, ZHANG Z P, et al. Rethinking the role of excess/residual lead iodide in perovskite solar cells[J]. Adv Funct Mater, 2023: 2215171.

    [31] [31] LIANG J W, HU X Z, WANG C, et al. Origins and influences of metallic lead in perovskite solar cells[J]. Joule, 2022, 6(4): 816-833.

    [32] [32] TAN S, HUANG T Y, YAVUZ I, et al. Stability-limiting heterointerfaces of perovskite photovoltaics[J]. Nature, 2022, 605(7909): 268-273.

    [33] [33] LEE J W, TAN S, SEOK S I, et al. Rethinking the A cation in halide perovskites[J]. Science, 2022, 375(6583): eabj1186.

    [34] [34] ZHANG F, PARK S Y, YAO C L, et al. Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells[J]. Science, 2022, 375(6576): 71-76.

    [35] [35] AZMI R, UGUR E, SEITKHAN A, et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions[J]. Science, 2022, 376(6588): 73-77.

    [36] [36] CHEN H, TEALE S, CHEN B, et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells[J]. Nat Photon, 2022, 16(5): 352-358.

    [37] [37] BU T L, LI J, LI H Y, et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules[J]. Science, 2021, 372(6548): 1327-1332.

    [38] [38] JANG Y W, LEE S, YEOM K M, et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth[J]. Nat Energy, 2021, 6(1): 63-71.

    [39] [39] LIU Z H, QIU L B, ONO L K, et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2, 000-hour operational stability[J]. Nat Energy, 2020, 5(8): 596-604.

    [40] [40] SIDHIK S, WANG Y F, DE SIENA M, et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells[J]. Science, 2022, 377(6613): 1425-1430.

    [41] [41] EVEN J, PEDESSEAU L, KATAN C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites[J]. J Phys Chem C, 2014, 118(22): 11566-11572.

    [42] [42] WU G B, LIANG R, ZHANG Z P, et al. 2D hybrid halide perovskites: structure, properties, and applications in solar cells[J]. Small, 2021, 17(43): 2103514.

    [43] [43] ORTIZ-CERVANTES C, CARMONA-MONROY P, SOLIS-IBARRA D. Two-dimensional halide perovskites in solar cells: 2D or not 2D?[J]. ChemSusChem, 2019, 12(8): 1560-1575.

    [44] [44] WANG H, FANG C, LUO H, et al. Recent progress of the optoelectronic properties of 2D ruddlesden-popper perovskites[J]. J Semicond, 2019, 40(4): 041901.

    [45] [45] EVEN J, PEDESSEAU L, KATAN C. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites[J]. ChemPhysChem, 2014, 15(17): 3733-3741.

    [46] [46] ZHAO X M, LIU T R, LOO Y L. Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities[J]. Adv Mater, 2022, 34(3): 2105849.

    [47] [47] YAN L F, MA J J, LI P W, et al. Charge-carrier transport in quasi-2D ruddlesden-popper perovskite solar cells[J]. Adv Mater, 2022, 34(7): 2106822.

    [48] [48] TSAI H, NIE W Y, BLANCON J C, et al. High-efficiency two-dimensional ruddlesden-popper perovskite solar cells[J]. Nature, 2016, 536(7616): 312-316.

    [49] [49] ZHANG X, REN X D, LIU B, et al. Stable high efficiency two-dimensional perovskite solar cells via cesium doping[J]. Energy Environ Sci, 2017, 10(10): 2095-2102.

    [50] [50] ZHOU N, SHEN Y H, LI L, et al. Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells[J]. J Am Chem Soc, 2018, 140(1): 459-465.

    [51] [51] SOE C M M, NIE W Y, STOUMPOS C C, et al. Understanding film formation morphology and orientation in high member 2D ruddlesden-popper perovskites for high-efficiency solar cells[J]. Adv Energy Mater, 2018, 8(1): 1700979.

    [52] [52] ZHANG X Q, WU G, YANG S D, et al. Vertically oriented 2D layered perovskite solar cells with enhanced efficiency and good stability[J]. Small, 2017, 13(33): 1700611.

    [53] [53] LAI H T, KAN B, LIU T T, et al. Two-dimensional ruddlesden-popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%[J]. J Am Chem Soc, 2018, 140(37): 11639-11646.

    [54] [54] YANG Y, LIU C, SYZGANTSEVA O A, et al. Defect suppression in oriented 2D perovskite solar cells with efficiency over 18% via rerouting crystallization pathway[J]. Adv Energy Mater, 2021, 11(1): 2002966.

    [55] [55] LEUNG T L, AHMAD I, SYED A A, et al. Stability of 2D and quasi-2D perovskite materials and devices[J]. Commun Mater, 2022, 3: 63.

    [56] [56] LUO S Q, WANG J F, YANG B, et al. Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device[J].Front Phys, 2019, 14(5): 1-17.

    [57] [57] QUAN L N, YUAN M J, COMIN R, et al. Ligand-stabilized reduced-dimensionality perovskites[J]. J Am Chem Soc, 2016, 138(8): 2649-2655.

    [58] [58] LI X T, HOFFMAN J M, KANATZIDIS M G. The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency[J]. Chem Rev, 2021, 121(4): 2230-2291.

    [59] [59] SHI J S, GAO Y R, GAO X, et al. Fluorinated low-dimensional ruddlesden-popper perovskite solar cells with over 17% power conversion efficiency and improved stability[J]. Adv Mater, 2019, 31(37): 1901673.

    [60] [60] ZHA Y F, WANG Y, SHENG Y H, et al. Structural characterizations on the degradation of 2D organic-inorganic hybrid perovskites and its enlightenment to improved stability[J]. Nanotechnology, 2022, 33(28): 285702.

    [61] [61] XIAO X, DAI J, FANG Y J, et al. Suppressed ion migration along the In-plane direction in layered perovskites[J]. ACS Energy Lett, 2018, 3(3): 684-688.

    [62] [62] LIN Y, BAI Y, FANG Y J, et al. Suppressed ion migration in low-dimensional perovskites[J]. ACS Energy Lett, 2017, 2(7): 1571-1572.

    [63] [63] CHO J, DUBOSE J T, LE A N T, et al. Suppressed halide ion migration in 2D lead halide perovskites[J]. ACS Mater Lett, 2020, 2(6): 565-570.

    [64] [64] ZHANG Y Y, CHEN Q, YANG H S, et al. Water-repellent perovskites induced by a blend of organic halide salts for efficient and stable solar cells[J]. ACS Appl Mater Interfaces, 2021, 13(28): 33172-33181.

    [65] [65] ROSARIO V, ADRI A B J, HABISREUTINGER SEVERIN N, et al. Assessing health and environmental impacts of solvents for producing perovskite solar cells[J]. Nat Sustain, 2020, 4(3): 277-285.

    [66] [66] PRAT D, HAYLER J, WELLS A. A survey of solvent selection guides[J]. Green Chem, 2014, 16(10): 4546-4551.

    [67] [67] ZHANG M, XIN D Y, ZHENG X J, et al. Toward greener solution processing of perovskite solar cells[J]. ACS Sustainable Chem Eng, 2020, 8(35): 13126-13138.

    [68] [68] KOSASIH F U, ERDENEBILEG E, MATHEWS N, et al. Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules[J]. Joule, 2022, 6(12): 2692-2734.

    [69] [69] JIANG Y, HE S S, QIU L B, et al. Perovskite solar cells by vapor deposition based and assisted methods[J]. Appl Phys Rev, 2022, 9(2): 021305.

    [70] [70] LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapor deposition[J]. Nature, 2013, 501(7467): 395-398.

    [71] [71] GIL-ESCRIG L, DREESSEN C, PALAZON F, et al. Efficient wide-bandgap mixed-cation and mixed-halide perovskite solar cells by vacuum deposition[J]. ACS Energy Lett, 2021, 6(2): 827-836.

    [72] [72] IGUAL-MUOZ A M, VILA J, BOIX P P, et al. FAPb0.5Sn0.5I3: a narrow bandgap perovskite synthesized through evaporation methods for solar cell applications[J]. Sol RRL, 2020, 4(2): 1900283.

    [73] [73] ZHANG Z B, JI R, KROLL M, et al. Efficient thermally evaporated γ-CsPbI 3 perovskite solar cells[J]. Adv Energy Mater, 2021, 11(29): 2100299.

    [74] [74] JI R, ZHANG Z B, HOFSTETTER Y J, et al. Perovskite phase heterojunction solar cells[J]. Nat Energy, 2022, 7(12): 1170-1179.

    [75] [75] ALHARBI E A, ALYAMANI A Y, KUBICKI D J, et al. Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells[J]. Nat Commun, 2019, 10: 3008.

    [76] [76] YOO J J, WIEGHOLD S, SPONSELLER M C, et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss[J]. Energy Environ Sci, 2019, 12(7): 2192-2199.

    [77] [77] PROPPE A H, JOHNSTON A, TEALE S, et al. Multication perovskite 2D/3D interfaces form via progressive dimensional reduction[J]. Nat Commun, 2021, 12: 3472.

    [78] [78] MAHMUD M A, DUONG T, YIN Y T, et al. Double-sided surface passivation of 3D perovskite film for high-efficiency mixed-dimensional perovskite solar cells[J]. Adv Funct Mater, 2019, 30(7): 1907962.

    [79] [79] WANG X T, WANG Y, ZHANG T Y, et al. Steric mixed-cation 2D perovskite as a methylammonium locker to stabilize MAPbI3[J]. Angew Chem Int Ed, 2020, 59(4): 1469-1473.

    [80] [80] LIU Y H, AKIN S, HINDERHOFER A, et al. Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers[J]. Angew Chem Int Ed, 2020, 59(36): 15688-15694.

    [81] [81] LIN D X, ZHAN Z Y, HUANG X L, et al. Advances in components engineering in vapor deposited perovskite thin film for photovoltaic application[J]. Mater Today Adv, 2022, 16: 100277.

    [82] [82] QIU L B, HE S S, JIANG Y, et al. Metal halide perovskite solar cells by modified chemical vapor deposition[J]. J Mater Chem A, 2021, 9(40): 22759-22780.

    [83] [83] CHOI Y, KOO D, JEONG G, et al. A vertically oriented two-dimensional Ruddlesden-Popper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells[J]. Energy Environ Sci, 2022, 15(8): 3369-3378.

    [84] [84] SAHLI F, WERNER J, KAMINO B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nat Mater, 2018, 17(9): 820-826.

    [85] [85] LA-PLACA M G, GIL-ESCRIG L, GUO D Y, et al. Vacuum-deposited 2D/3D perovskite heterojunctions[J]. ACS Energy Lett, 2019, 4(12): 2893-2901.

    [86] [86] CHOI W G, PARK C G, KIM Y, et al. Sn perovskite solar cells via 2D/3D bilayer formation through a sequential vapor process[J]. ACS Energy Lett, 2020, 5(11): 3461-3467.

    [87] [87] LEE J W, DAI Z H, HAN T H, et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells[J]. Nat Commun, 2018, 9(1): 1-10.

    [88] [88] LI H S, JIANG X Y, WEI Q, et al. Low-dimensional inorganic tin perovskite solar cells prepared by templated growth[J]. Angew Chem Int Ed, 2021, 60(30): 16330-16336.

    [89] [89] CHEN Z M, LIU M Y, LI Z C, et al. Stable Sn/Pb-based perovskite solar cells with a coherent 2D/3D interface[J]. iScience, 2018, 9: 337-346.

    [90] [90] CHEN J Z, LEE D, PARK N G. Stabilizing the Ag electrode and reducing J-V hysteresis through suppression of iodide migration in perovskite solar cells[J]. ACS Appl Mater Interfaces, 2017, 9(41): 36338-36349.

    [91] [91] YU Y, LIU R, LIU C, et al. Synergetic regulation of oriented crystallization and interfacial passivation enables 19.1% efficient wide-bandgap perovskite solar cells[J]. Adv Energy Mater, 2022, 12(33): 2201509.

    [92] [92] FU X L, HE T W, ZHANG S F, et al. Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics[J]. Chem, 2021, 7(11): 3131-3143.

    [93] [93] LIN R X, XU J, WEI M Y, et al. All-perovskite tandem solar cells with improved grain surface passivation[J]. Nature, 2022, 603(7899): 73-78.

    [94] [94] XIONG M, ZOU W J, FAN K, et al. Tailoring phase purity in the 2D/3D perovskite heterostructures using lattice mismatch[J]. ACS Energy Lett, 2022, 7(1): 550-559.

    [95] [95] YANG G, REN Z W, LIU K, et al. Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation[J]. Nat Photon, 2021, 15(9): 681-689.

    [96] [96] WANG F, GENG W, ZHOU Y, et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells[J]. Adv Mater, 2016, 28(45): 9986-9992.

    [97] [97] KIM H, LEE S U, LEE D Y, et al. Optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells[J]. Adv Energy Mater, 2019, 9(47): 1902740.

    [98] [98] HARTONO N T P, THAPA J, TIIHONEN A, et al. How machine learning can help select capping layers to suppress perovskite degradation[J]. Nat Commun, 2020, 11: 4172.

    [99] [99] RAN C X, GAO W Y, LI J R, et al. Conjugated organic cations enable efficient self-healing FASnI3 solar cells[J]. Joule, 2019, 3(12): 3072-3087.

    [100] [100] LIN Y, BAI Y, FANG Y J, et al. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures[J]. J Phys Chem Lett, 2018, 9(3): 654-658.

    [101] [101] HUANG Z R, PROPPE A H, TAN H R, et al. Suppressed ion migration in reduced-dimensional perovskites improves operating stability[J]. ACS Energy Lett, 2019, 4(7): 1521-1527.

    [102] [102] GUO Y W, APERGI S, LI N, et al. Phenylalkylammonium passivation enables perovskite light emitting diodes with record high-radiance operational lifetime: the chain length matters[J]. Nat Commun, 2021, 12: 644.

    [103] [103] SUTANTO A A, DRIGO N, QUELOZ V I E, et al. Dynamical evolution of the 2D/3D interface: a hidden driver behind perovskite solar cell instability[J]. J Mater Chem A, 2020, 8(5): 2343-2348.

    [104] [104] SUTANTO A A, SZOSTAK R, DRIGO N, et al. In situ analysis reveals the role of 2D perovskite in preventing thermal-induced degradation in 2D/3D perovskite interfaces[J]. Nano Lett, 2020, 20(5): 3992-3998.

    [105] [105] FIORENTINO F, ALBAQAMI M D, POLI I, et al. Thermal- and light-induced evolution of the 2D/3D interface in lead-halide perovskite films[J]. ACS Appl Mater Interfaces, 2022, 14(30): 34180-34188.

    [106] [106] LUO L, ZENG H P, WANG Z W, et al. Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance[J]. Nat Energy, 2023, 8(3): 294-303.

    Tools

    Get Citation

    Copy Citation Text

    LUO Long, LI Shangzhi, SHI Yingying, ZENG Miaomiao, ZHAO Jie, LIANG Hong, LI Lin, LI Xiong. Research Progress on 3D/2D Multi-Dimensional Perovskite Materials and Photovoltaic Devices[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2254

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 27, 2023

    Accepted: --

    Published Online: Oct. 7, 2023

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics