Journal of the Chinese Ceramic Society, Volume. 50, Issue 4, 1117(2022)
Research Progress on Evanescent Wave Sensor Based on Mid-Infrared Optical Fiber
[1] [1] QUINN J B, NGUYEN V Q, SANGHERA J S, et al. Strength and fractographic analysis of chalcogenide As-S-Se and Ge-As-Se-Te glass fibers[J]. J Non·Cryst Solids, 2003, 325(1): 150-157.
[2] [2] KUZYUTKINA Y S, ROMANOVA E A, KOCHUBEI V I, et al. Specific features of linear and nonlinear optical responses of chalcogenide glasses in the As-S-Se and As-Se-Te systems[J]. Opt Spectrosc, 2014, 117(1): 49-55.
[3] [3] VELMUZHOV A P, SHIRYAEV V, SUKHANOV M V, et al. Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis[J]. Opt Mater, 2018, 75: 525-532.
[4] [4] STARECKI F, CHARPENTIER F, DOUALAN J-L, et al. Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers[J]. Sensors Actuat B-Chem, 2015, 207: 518-525.
[5] [5] JIANG X, JHA A. Engineering of a Ge-Te-Se glass fibre evanescent wave spectroscopic (FEWS) mid-IR chemical sensor for the analysis of food and pharmaceutical products[J]. Sensors Actuat B-Chem, 2015, 206: 159-169.
[6] [6] KRONICK M N, LITTLE W A. A new immunoassay based on fluorescence excitation by internal reflection spectroscopy[J]. J Immunol Methods, 1975, 8(3): 235-240.
[7] [7] FALCO L, SPESCHA G, ROTH P, et al. Non-ambiguous evanescent-wave fibre refractive index and temperature sensor[J]. Optica Acta: International Journal of Optics, 1986, 33(12): 1563-1570.
[8] [8] PAUL H, KYCHAKOFF G . A fiber-optic evanescent field absorption sensor[J]. J Laser Appl, 1986, 1986(S1): 27-32.
[9] [9] FRANCE P W, CARTER S F, MOORE M W, et al. Properties of fluorozirconate fibres for applications in the 0.5 To 4.5 μm Region[C]//Infrared Optical Materials and Fibers V.International Society for Optics and Photonics, 1987, 843: 56-61.
[10] [10] PRUSS D, DREYER P, KOCH E. Applications Of IR-fibers in remote gas-spectroscopy[C]//New Materials for Optical Waveguides. International Society for Optics and Photonics, 1987, 799: 117-122.
[11] [11] Sanghera J S, Kung F H, Pureza P C, et al. Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers[J]. Appl Opt, 1994, 33(27): 6315-6322.
[12] [12] HOCD S, BOUSSARD-PlDEL C, FONTENEAU G, et al. Recent developments in chemical sensing using infrared glass fibers[J]. J Non-Cryst Solids, 2000, 274(1): 17-22.
[13] [13] MIZAIKOFF B, GBEL R, KRSKA R, et al. Infrared fiber-optical chemical sensors with reactive surface coatings[J]. Sensors Actuat B-Chem, 1995, 29(1-3): 58-63.
[14] [14] JAKUSCH M, MIZAIKOFF B, KELLNER R, et al. Towards a remote IR fiber-optic sensor system for the determination of chlorinated hydrocarbons in water[J]. Sensors Actuat B-Chem, 1997, 38(1-3): 83-87.
[15] [15] CHAHAL R, STARECKI F, BOUSSARD-PlDEL C, et al. Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers[J]. Sensors Actuat B-Chem, 2016, 229: 209-216.
[16] [16] ANNE M L, SALLE E L G L, BUREAU B, et al. Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy[J]. Sensors Actuat B-Chem, 2009, 137(2): 687-691.
[17] [17] PREEJITH P V, LIM C S, CHIA T F, Serum protein measurement using a tapered fluorescent fibre-optic evanescent wave-based biosensor[J]. Meas Sci Technol, 2006, 17(12): 3255-3260.
[18] [18] ALIMAGHAM F, WINTERBURN J, DOLMAN B, et al. Real-time bioprocess monitoring using a mid-infrared fibre-optic sensor[J]. Biochem Eng J, 2021, 167: 107889.
[19] [19] JIAO L Z, ZHONG N B, ZHAO X D, et al. Recent advances in fiber-optic evanescent wave sensors for monitoring organic and inorganic pollutants in water[J]. TrAC-Trend Anal Chem, 2020, 127: 115892.
[20] [20] JHA A, JIANG X, LOUSTEAU J, et al. Recent advances in mid-IR optical fibres for chemical and biological sensing in the 2-15 μm spectral range[C]//Photonics North 2009. International Society for Optics and Photonics, 2009, 7386: 73860V.
[21] [21] QI Q Y, CHU L Y, ZHOU W J, et al. A gas-liquid sensor functionalized with graphene-oxide on chalcogenide tapered fiber by chemical etching[J]. J Lightwave Technol, 2021, 39(21): 6976-6984.
[22] [22] FANG S Y, SONG D, ZHUO Y X, et al. Simultaneous and sensitive determination of Escherichia coli O157: H7 and Salmonella Typhimurium using evanescent wave dual-color fluorescence aptasensor based on micro/nano size effect[J]. Biosens Bioelectron, 2021, 185: 113288.
[23] [23] PRABHAKAR A, VERMA D, DHWAJ A, et al. Microchannel integrated tapered and tapered-bend waveguides, for proficient, evanescent-field absorbance based, on-chip, chemical and biological sensing operations[J]. Sensors Actuat B-Chem, 2021, 332: 129455.
[24] [24] ISLAM S, ALSHOAIBI A, SABER O, et al. Thermally stable mesoporous pH dyes encapsulated titania nanocomposites for opto-chemical sensing[J]. Mater Res Bull, 2022, 146: 111605.
[25] [25] ZHONG N, LIAO Q, ZHU X, et al. A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor[J]. Anal Chem, 2014, 86(8): 3994-4001.
[27] [27] AHMAD M, HENCH L L, Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers[J]. Biosensors Bioelectron, 2005, 20(7): 1312-1319.
[28] [28] GUPTA B D, DODEJA H, TOMAR A K, Fibre-optic evanescent field absorption sensor based on a U-shaped probe[J]. Opt Quant Electron, 1996, 28(11): 1629-1639.
[29] [29] ZHONG N B, ZHAO M F, Li Y S, U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring[J]. Biomed Opt Express, 2016, 7(2): 335-351.
[30] [30] HOO Y L, JIN W, Ho H L, et al. Measurement of gas diffusion coefficient using photonic crystal fiber[J]. IEEE Photon Tech, 2003, 15(10): 1434-1436.
[32] [32] REGAN F, WALSH F, WALSH J. Development of plasticised PVC sensing films for the determination of BTEX compounds in aqueous samples[J]. Int J Environ Anal Chem, 2003, 83(7-8): 621-631.
[33] [33] MURPHY B, MCLOUGHLIN P. Determination of chlorinated hydrocarbon species in aqueous solution using teflon coated atr waveguide/FTIR spectroscopy[J]. Int J Environ Anal Chem, 2003, 83(7-8): 653-662.
[34] [34] LU F, WRIGHT R, LU P, et al. Distributed fiber optic pH sensors using sol-gel silica based sensitive materials[J]. Sensors Actuat B-Chem, 2021, 340: 129853.
[35] [35] HUANG X X, LAI M, ZHAO Z M, et al. Fiber optic evanescent wave humidity sensor based on SiO2/TiO2 bilayer films[J]. Appl Opt, 2021, 60(8): 2158-2165.
[36] [36] MATSON B S, GRIFFIN J W. Infrared Fiber Optic Sensors For The Remote Detection Of Hydrocarbons Operating In The 3.3 To 3.36 Micron Region[C]//Chemical, Biochemical, and Environmental Fiber Sensors. International Society for Optics and Photonics, 1990, 1172: 13-26.
[37] [37] RUDDY V, MCCABE S. Detection of propane by IR-ATR in a teflon-clad fluoride glass optical fiber[J]. Appl Spectmsc, 1990, 44(9): 1461-1463.
[38] [38] LEVIN K H, KINDLER E, KO T, et al. Infrared-fiber-coupled acousto-optic tunable filter spectrometer[C]//Infrared Fiber Optics II. International Society for Optics and Photonics, 1990, 1228: 266-268.
[39] [39] DRIVER R D, BRUBAKER M L, DOWNING J N, et al. Multiplexed sensor systems in quantitative FTIR process spectroscopy[C]//Infrared Fiber Optics III. International Society for Optics and Photonics, 1992, 1591: 263-274.
[41] [41] COMPTON D A C, HILL S L, WRIGHT N A, et al. In situ FT-IR Analysis of a composite curing reaction using a mid-infrared transmitting optical fiber[J]. Appl Spectrosc, 1988, 42(6): 972-979.
[42] [42] HOCD S, BOUSSARD-PLDEL C, FONTENEAU G, et al. Chalcogens based glasses for IR fiber chemical sensors[J]. Solid State Sci, 2001, 3(3): 279-284.
[43] [43] LE COQ D, MICHEL K, KEIRSSE J, et al. Infrared glass fibers for in-situ sensing, chemical and biochemical reactions[J]. C R Chim, 2002, 5(12): 907-913.
[44] [44] LE C D, BOUSSARD-PlDEL C, FONTENEAU G, et al. Chalcogenide double index fibers: fabrication, design, and application as a chemical sensor[J]. Mater Res Bull, 2003, 38(13): 1745-1754.
[45] [45] MICHEL K, BUREAU B, POUVREAU C, et al. Development of a chalcogenide glass fiber device for in situ pollutant detection[J]. J Non-Cryst Solids, 2003, 326: 434-438.
[46] [46] SHIRYAEV V S, ADAM J L, ZHANG X H, et al. Infrared fibers based on Te-As-Se glass system with low optical losses[J]. J Non·Cryst Solids, 2004, 336(2): 113-119.
[47] [47] AHMAD M, HENCH L L. Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers[J]. Biosens Bioelectron, 2005, 20(7): 1312-1319.
[48] [48] HEO J, RODRIGUES M, SAGGESE S J, et al. Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers[J]. Appl Opt, 1991, 30(27): 3944-3951.
[49] [49] MICHEL K, BUREAU B, BOUSSARD-Plédel C, et al. Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers[J]. Sensors Actuators B-Chem, 2004, 101(1-2): 252-259.
[50] [50] CHARPENTIER F, NAZABAL V, TROLES J, et al. Infrared optical sensor for CO2 detection[C] // Optical Sensors 2009, 2009: 735610.
[51] [51] BRILLAND L, CHARPENTIER F, TROLES J, et al. Microstructured chalcogenide fibers for biological and chemical detection: case study: A CO2 sensor[C] // 20th International Conference on Optical Fibre Sensors, 2009: 750358
[52] [52] MAURUGEON S, BUREAU B, BOUSSARD-PLéDel C, et al. Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing[J]. Opt Mater Express, 2011, 33(4): 660-663.
[53] [53] ANNE M L, LA SALLE E L G, BUREAU B, et al. Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy[J]. Sensors Actuators B-Chem, 2009, 137(2): 687-691.
[54] [54] CUI S, BOUSSARD-PLEDEL C, LUCAS J, et al. Te-based glass fiber for far-infrared biochemical sensing up to 16 μm[J]. Opt Express, 2014, 22(18): 21253-21262.
[55] [55] YANG C F, WANG X M, SU J X, et al. Spectroscopy analysis of mixed organic liquid detection with Ge20Se60Te20 glass-tapered fiber[J]. J Non-Cryst Solids, 2018, 500: 377-381.
[56] [56] WANG L L, MA W Q, ZHANG P Q, et al. Mid-infrared gas detection using a chalcogenide suspended-core fiber[J]. J Lightwave Technol, 2019, 37(20): 5193-5198.
[57] [57] SU J X, DAI S X, JIANG L, et al. Fabrication and bending strength analysis of low-loss Ge15As25Se40Te20 chalcogenide glass fiber: a potential mid-infrared laser transmission medium[J]. Opt Mater Express, 2019, 9(7): 2859.
[58] [58] VELMUZHOV A P, SUKHANOV M V, KOTEREVA T V, et al. Optical fibers based on special pure Ge20Se80 and Ge26As17Se25Te32 glasses for FEWS[J]. J Non-Cryst Solids, 2019, 517: 70-75.
[59] [59] WANG M, YANG F, DAI S X, et al. Effect of the geometries of Ge-Sb-Se chalcogenide glass tapered fiber on the sensitivity of evanescent wave sensors[J]. J Lightwave Technol, 2021, 39(14): 4828-4836.
[60] [60] WANG X M, SU J X, WANG Y Y, et al. High-sensitivity sensing in bare Ge-Sb-Se chalcogenide tapered fiber with optimal structure parameters[J]. J Non·Cryst Solids, 2021, 559: 120686.
[61] [61] SU J X, DAI S X, GAN N. Optimized Ge-As-Se-Te chalcogenide glass fiber sensor with polydopamine-coated tapered zone for the highly sensitive detection of p-xylene in waters[J]. Opt Express, 2020, 28(1): 184-193.
[62] [62] TAGA K, MIZAIKOFF B, KELLNER R, Fiber optic evanescent field sensors for gaseous species using MIR transparent fibers[J]. Fresenius J Anal Chem, 1994, 348(8): 556-559.
[63] [63] CHARPENTIER F, BUREAU B, TROLES J, et al. Infrared monitoring of underground CO2 storage using chalcogenide glass fibers[J]. Opt Mater, 2009, 31(3): 496-500.
[64] [64] KOSOLAPOV A F, PRYAMIKOV A D, BIRIUKOV A S, et al. Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core[J]. Opt Express, 2011, 19(25): 25723-25728.
[65] [65] LUCAS P, LE COQ D, JUNCKER C, et al. Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy[J]. Appl Spectmsc, 2005, 59(1): 1-9.
[66] [66] YOO W, SEO J, CHO D, et al. Chalcogenide optical fiber based sensor for non-invasive monitoring of respiration[C] // 2009 IEEE Symposium on Industrial Electronics & Applications, 2009: 617-619.
[67] [67] TOUPIN P, BRILLAND L, BOUSSARD-PléDel C, et al. Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing[J]. J Non·Cryst Solids, 2013, 377: 217-219.
[68] [68] SHARMA A K, GUPTA J. Graphene based chalcogenide fiber-optic evanescent wave sensor for detection of hemoglobin in human blood[J]. Opt Fiber Technol, 2018, 41: 125-130.
[69] [69] WU Z, XU Y, QI D, et al. Progress in preparation and applications of Te-As-Se chalcogenide glasses and fibers[J]. Infrared Phys Techn, 2019, 102: 102981.
[72] [72] STEINER H, JAKUSCH M, KRAFT M, et al. In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system[J]. Appl Spectmsc, 2003, 57(6): 607-613.
[73] [73] CHEN J Z, LIU Z, GMACHL C F, et al. Silver halide fiber-based evanescent-wave liquid droplet sensing with room temperature mid-infrared quantum cascade lasers[J]. Opt Express, 2005, 13(16): 5953-5960.
[74] [74] LUZINOVA Y, ZDYRKO B, LUZINOV I, et al. Detecting trace amounts of water in hydrocarbon matrices with infrared fiberoptic evanescent field sensors[J]. Analyst, 2012, 137(2): 333-341.
[75] [75] LU R, SHENG G, LI W, et al. IR-ATR chemical sensors based on planar silver halide waveguides coated with an ethylene/propylene copolymer for detection of multiple organic contaminants in water[J]. Angew Chem, 2013, 125(8): 2321-2324.
[76] [76] LU R, LI W-W, MIZAIKOFF B, et al. High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water[J]. Nat Protoc, 2016, 11(2): 377-386.
[77] [77] DETTENRIEDER C, RAICHLIN Y, KATZIR A, et al. Toward the required detection limits for volatile organic constituents in marine environments with infrared evanescent field chemical sensors[J]. Sensors, 2019, 19(17): 3644.
[78] [78] ALIMAGHAM F, PLATKOV M, PRESTAGE J, et al. Mid-IR evanescent-field fiber sensor with enhanced sensitivity for volatile organic compounds[J]. RSC Adv, 2019, 9(37): 21186-21191.
Get Citation
Copy Citation Text
WANG Min, DAI Shixun, ZHANG Peiqing, WANG Xunsi, KANG Shiliang, LIU Zijun. Research Progress on Evanescent Wave Sensor Based on Mid-Infrared Optical Fiber[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1117
Category:
Received: Dec. 30, 2021
Accepted: --
Published Online: Nov. 13, 2022
The Author Email: